
Assignment 2: Implementing fscanf

Goal
• develop an implementation of fscanf that supports

– strings: sequence of characters ends in whitespace (’ ’) or newline ('\n')
– chars
– ints: sequence of digits
– variable number of parameters, passed using a linked list or array

• how scanf works
– the format string contains place-holders (that start with a ‘%’) and regular characters
– the characters of the format string are parsed
– regular characters from the format string must match a character from the input
– when it finds a ‘%’ character it

∗ reads the next character and determines what the placeholder is for: int, string, or char
∗ it verifies the type of the next parameter from the list; if there is a type mismatch, it returns
the number of matched parameters

∗ it reads characters from the input for as long as they match the type of the parameter (see
above for the definition of the types)

∗ the characters read are converted to the respective data type and stored in the parameter
∗ advances to the next parameter and increments the number of matched characters
∗ the last character that was read (and that did not match the type of the parameter) is pushed
back into the input buffer, for example
· when reading a whitespace while parsing a string
· when reading a non-digit while parsing an int

– advances in the format string
• since this is a file the input ends

– in a newline
– or at EOF

• the function should take as parameters:
– the file, must have been opened previously
– the format string, that should have the same syntax as the stdio implementation of scanf

∗ no fancy stuff, just %d, %s, and %c
– a singly linked list where list nodes contain

∗ a pointer to the data: the address should be valid, which means it must be allocated prior to
calling scanf; scanf will not allocate memory itself

∗ an indication of the data type
∗ the next pointer

– it is also possible instead of using a linked list to use an array of structures, that comes at a lower
grade

• the function should return the number of matched parameters
• test the function in a complete program

– you are given a file containing student records
– each student record contains

∗ name
∗ initial (single char)

1



∗ surname
∗ year (int)
∗ course name (e.g. “KCOMP”)
∗ group (single char, e.g. ‘A’)
∗ average (int e.g. 75)

– the fields of a student record are written in the file in order, using the format string:
∗ "%s (%c) %s %d %s %c %d"

– the path to the file should be passed as a command line parameter
– open the file
– your program must use the scanf implementation to read the student records to a student database

∗ this can be implemented as a linked list for the maximum grade
∗ using a static array of pointers to student records, for lower grade
∗ using a static array of student records, for lowest grade

– print all the student entries from the database.
– close the file.

Notes
• you are not allowed to use the stdio fscanf in any part of your scanf implementation.
• when you are reading integers, don’t forget to initialise your parameter’s value to 0 before starting to

form the number out of the digits
• when you are reading strings don’t forget to finalise the string with the ‘\0’ character at the end
• getchar is used to take characters out of the input buffer for processing; you can use ungetc(ch,

stdin) to put the character ch back in the buffer so it can be processed later
• when the format string is all processed you should clear the input buffer by reading all remaining

characters until you get to the newline
• check for the EOF when parsing the input; if EOF is found then scanf should exit, returning the

matched elements up to that point.

Grading
General 10/100

• structure to hold scanf parameter 5
• scanf parameters 5

– using linked list 5/5
– using array 2/5

Scanf implementation 30/100

• function prototype 3
• parsing format string 25

– don’t skip characters in the input 2/25
– don’t skip characters in the format string 2/25
– handle EOF correctly 2/25
– parsing non-placeholder characters 2/25
– parsing placeholders 9/25

∗ parsing int 4/9
∗ parsing string 4/9
∗ parsing char 1/9

– storing values read into parameters 4/25
– advancing to the next parameter 2/25
– error check the parameters that should hold the values read 2/25

• return the correct value 2

Main program 60/100

2



• student database 20
– structure to hold student details 5/20
– option 15/20

∗ using linked list 15/15
· memory allocation for student record 3/15
· memory allocation for list node 3/15
· initialising the list node 4/15
· adding nodes to the list 5/15

∗ using array of pointers 10/15
· declare the array correctly 5/10
· memory allocation for student record 5/10

∗ using array of structs 5/15
• calling the scanf implementation 25

– create the parameter list 10/25
∗ using linked list 8/10

· allocate memory for list nodes 4/8
· add nodes to the list 4/8

∗ using array 4/8
∗ correct number of parameters 2/10

– for each parameter set the right values for its type and the address to where the data should be
stored 15/25

∗ parameter type must be correct and correspond to the format string placeholder 2/15
∗ address must be correctly allocated in 5/15

· location 2/5
· size 3/5
· either statically or dynamically.

∗ values read must eventually be copied into the correct database entry 8/15
• reading from the file 15

– get the file path from the command line arguments 3
∗ error checking 1/3

– declare the file variable 1
– open the file 3

∗ error checking 1/3
– close the file 1
– reading entries 7

∗ read fixed (predefined) number of entries 3/7
∗ read unlimited number of entries, using error checking on scanf to determine when to stop

reading 7/7

Learning outcomes
• structures
• linked lists
• pointers
• memory allocation
• switch statements
• enums
• string processing
• state machines

3


	Goal
	Notes

	Grading
	Learning outcomes

