
Implementing a Binary Search Tree

Summary: In this assignment, you will complete the implementation of a Binary Search Tree, and write
several methods that manipulate it.

1 Background

In order to practice implementing symbol tables, you will implement a binary search tree. A BST can
actually be considered to be another type of data structure that we can use to implement an ADT. Since
symbol tables are about �nding values based on keys (the �search� problem), it's appropriate to use a BST to
implement them. BSTs are nice structures for searching, because they mimic the process of a binary search
(O(logn)). Unfortunately, fast O(logn) look ups only work in BSTs that are balanced. Any time we remove
or add nodes, there is a chance the tree will become stilted, which can degrade search to look like O(n).
After we �nish the implementation of a BST, we will go on to address this problem.

This document is separated into four sections: Background, Requirements, Testing, and Submission.
You have almost �nished reading the Background section already. In Requirements, we will discuss what
is expected of you in this homework. In Testing, we give some basic suggestions on how the tree additions
should be tested. Lastly, Submission discusses how your source code should be submitted on Canvas.

2 Requirements [44 points]

In this assignment you will practice implementing symbol tables using BSTs. Download the attached base
�le and then rename it, and the class inside, to include your last name instead of "Base". You will only need
to change the base �le. The purpose of OrderedSymbolTable and SymbolTable are only to de�ne the ADTs
which the BST data structure supports. The BST interface de�nes some additional pieces of functionality
speci�c to BST implementations of symbol tables like balance(). (Note: the BST interface also contains a
getRoot() method. This method exists only for testing, in practice we would avoid have something that so
immediately exposes the internal representation.)

� Implement contains(), isEmpty(), deleteMax(), and size(Key lo, Key hi). [4 points]

� Recursive methods are nice since it is easy to tell they work, however, they tend to be slower than non-
recursive methods. Give non-recursive implementations of get() and put(). (Hint: the book contains
the solution for one of these.) Include them in your BST class as new methods called getFast() and
putFast(). [6 points]

� Write a method that balances an existing BST, call it balance(). A BST is balanced if the height of its
left and right sub-trees are di�erent by at most one. Recursively applied. If the tree is balanced, then
searching for keys will take act like binary search and require only logn comparisons. No performance
requirements on your balancing algorithm. (Come up with a way yourself - don't skip to 3.3. That
section is really complicated and meant for the harder case where you need to do it in log time.) [20
points]

� Sedgewick 3.2.37: Write a method displayLevel(Key key) that takes a Key as argument and prints the
values in the subtree rooted at that node in level order (in order of their distance from the root, with
nodes on each level in order from left to right). Hint: Use a Queue. [14 points]

1



Required Files Optional Files

CompletedBST.java (none)

Table 1: Submission ZIP �le contents.

2.1 Packages

Do not import any packages other than java.util.Collections, java.util.LinkedList, java.util.NoSuchElementException,
or java.util.Queue. (Do not use any star imports.)

3 Testing

For most of the methods that you write, you should be able to tell if they are correct by inspecting the
output. However, the balance and printLevel methods are more tricky. In the base �le, there is sample code
that builds a BST, displays it (using printLevel), balances it, and displays it again. The output is shown
below. You may want to start by implementing printLevel and seeing if the output matches the screen shot
for the �before balance� state of the tree. Ideally you would write a couple of additional tests to verify that
level-wise display is working. After that is done, then you can move on to checking balance. Your answer
may or may not exactly match the output below. If you want to be absolutely sure it is balanced, you'll
need to take a look at the tree's structure in a debugger.

4 Submission

The submission for this assignment has one part: a source code submission.
Writeup: For this assignment, no write up is required.
Source Code: The source �le must be named as "CompletedBST.java", and then added to a ZIP �le

(which can be called anything). The class must be in the �edu.ser222.m03_02� package, as already done in
the provided base �le (do not change it!). You will submit the ZIP on Gradescope.

4.1 Gradescope

GRADESCOPE IS BETA FOR FALL 2021, ITS USE IS SUBJECT TO CHANGE. IF IT BREAKS, TELL
US.

This assignment will be graded using the Gradescope platform. Gradescope enables cloud-based assess-
ment of your programming assignments. Our implementation of Gradescope works by downloading your
assignment to a virtual machine in the cloud, running a suite of test cases, and then computing a tentative
grade for your assignment. A few key points:

� Grades computed after uploading a submission to Gradescope are NOT FINAL. We have
�nal say over the grade, and may adjust it upwards or downwards.

� Additional information on the test cases used for grading is not available, all the infor-
mation you need (plus some commonsense and attention to detail) is provided in the
assignment speci�cation. Note that each test case will show a small hint in its title about what it
is testing that can help you to target what needs to be investigated.

2



If you have a hard time passing a test case in Gradescope, you should consider if you have made any
additional assumptions during development that were not listed in the assignment, and then try to make
your submission more general to remove those assumptions.

Protip: the Gradescope tests should be seen as a way to get immediate feedback on your program. This
helps you both to make sure you are meeting the assignments requirements, and to check that you are
applying your knowledge correctly. Food for thought: if you start on the assignment early, check against our
suite often, and use its feedback, there's no reason why you can't both get full credit and know that you'll
get full credit even before the deadline.

4.1.1 Standard Programming Deductions

Due to the nature of cloud grading, we use a di�erent policy for the standard deductions:

� If your submission does not compile, or is missing the �le mentioned above, you will
receive a zero grade.

� Following the �le submission standards (e.g., the submission contains project �les, lacks
a proper header) is optional, and will not be enforced. (We would appreciate if you at least
included the header though!)

3


