

The Nutshell Term Project
COP4600 – Operating Systems

Overview
This team project involves writing a command interpreter for a Korn shell-like command language in C
using Lex and Yacc running under Unix. Your shell will parse command lines and execute the
appropriate command(s). The core of the shell consists of simple commands, pipes, I/O redirection,
environment variables, aliases, pathname searching, and wild-carding. You will do well on the project if
these features work well in your shell. For extra credit you may implement tilde expansion and
automated command completion. Each requirement in the core section will be explained in the rest of
this handout.

You are required to use Lex and Yacc for this project.1 You should not hand-build tokenizers or
parsers in your implementation.

It would be in your best interest to start working early on this project. Only teams of two will be
accepted. Teaming should be finalized by 11:59PM Friday March 19, 2021. Guidelines about how
to pair up into teams will be provided via Announcements. Pairing is not allowed across the UF
Online Degree section (section 06EH) and any other section.

We will be grading your projects by running them against a set of test files that will exercise
various features of the shell which we think are important. You should test your shell extensively
covering all features individually and in combinations.

Your project will be graded on correctness, completeness, your level of testing, and the
organization of your code.

Thursday discussion classes will cover the following to prepare you to carry on this project:
● Thursday March 18: Lex and Yacc
● Thursday March 25: Git II
● Thursday April 1: Linux Filesystem/Lab 6 or Open Support Session
● Thursday April 8: Open Support Session

All students should make themselves available during Thursday discussion sessions on April 15
and April 22. Grading some group projects might require a Zoom meeting with the group and the TA’s
and PM’s. There will be no rescheduling allowed for these grading sessions.

The Shell
Your shell will accept commands from standard input (terminal or files) and execute them. The type of
commands your shell will accept are detailed below, but first let us define words and metacharacters -
important ingredients for shell commands.

1Or use flex/bison, or lex++/yacc++.

Words, Special Conventions and Metacharacters

● Word. We will use word to refer to a sequence of characters which are treated as a logical unit,
sometimes referred to as a token. Words are separated by white space, newlines, and
metacharacters. Any other character is valid in a word. If you wish a word to contain white
space, then you must put double quotes around it. For example, your scanner should interpret
echo test > foo as 3 words and one metacharacter. However, the command echo
"test > foo" would be interpreted by the scanner as 2 words, echo and test > foo
(note that the “" have been removed from "test > foo").

● White space. White space consists of any combination of the characters: space and tab.
● The character . (dot) alone or as a first component of a path name refers to the current working

directory.
● The characters .. (dot dot) alone or as a first component of a path name refer to the parent

directory.
● The tilde character ~ alone or as a first component of a path name refers to and substitutes for

the user’s home directory.
● Metacharacter. Metacharacters are characters which have special meaning to the shell, and

stand only for themselves. Metacharacters cannot be part of a word unless they are preceded by a
\ or are inside quotes. The following are metacharacters:

< > | " \ &

Built-in Commands
● setenv variable word This command sets the value of the variable variable to be word.
● printenv This command prints out the values of all the environment variables, in the format

variable=value, one entry per line.
● unsetenv variable This command will remove the binding of variable. If the variable is

unbound, the command is ignored.
● Mandatory environment variables include HOME which shows the home directory of the user

and PATH which shows the list of paths to be searched to find a command’s executable file.
● Specific conventions regarding the PATH environment variable. Your shell should interpret

the value of PATH to be a list of colon-separated words (for instance, word:word:word). Your
shell should reparse and do tilde (~) expansion at the beginning (first character) of each of these
words whenever the value of the variable is reset

● cd word This command changes the current directory to word, where word is a directory name.
The directory name may be absolute (starts with root which is /) or relative to the current
directory. You must handle cd with no arguments, to take you back to the home directory, i.e., it
should have the same effect as cd ~ (see Tilde Expansion).

● alias name word Adds a new alias to the shell. See the subsection on aliases for more
information.

● unalias name Remove the alias for name.
● alias lists all available aliases
● bye Gracefully quit the shell. The shell should also exit if it receives the end-of-file character.

Other Commands
cmd [arg]* [|cmd [arg]*]* [< fn1] [>[>] fn2] [2>fn3 || 2>&1] [&]

Any command of this form can be accepted along with its arguments, pipes, and I/O redirection

if present. Note that the I/O redirection can only appear at the end of the line in your shell. The construct
2>file redirects the standard error of the program to file, while 2>&1 connects the standard error of
the program to its standard output. If cmd does not start with a /, the shell must check (search for) the
directories on the path that is the value of the environment variable PATH for the command. The cmd
should be run only if the file exists and is executable. It is a common practice to include the current
directory denoted by “.” in the PATH variable to allow for the search to include the current working
directory. You are required to always include the current working directory in your PATH. You must
also be able to handle I/O redirection on builtin commands: printenv and alias. If & exists at the end of
the command line, then the shell will execute this command in the background. If & doesn't exist, then
the shell will wait for this command to finish.

Aliases
You must implement a simplified version of the ksh alias mechanism. Your version will consist only of
simple string substitutions, and will not provide any rearrangement of the arguments. The commands are
of the following types:
alias The alias command with no arguments lists all of the current aliases.
alias name word This alias command adds a new alias to the shell. An alias is essentially a shorthand form of a
long command. For example, you may have an alias alias lf "/bin/ls -F" set up so that whenever you
type lf from the command line, the command that is executed is /bin/ls -F. Note that alias
expansion is only performed on the first word of a command. However, aliases may be nested. Your
shell has to detect when an infinite-loop alias expansion occurs.
unalias name The unalias command is used to remove the alias for name from the alias list.

It should be obvious that all alias expansions must be done before parsing the command or searching
any paths for the command binaries to execute.

Environment Variable Expansion ${variable}
It is also possible to include environment variables as part of words inside command lines. The shell
reads all the characters from ${ to the next } and assumes it is the name of a variable. The value, if any,
of the variable is substituted.

Wildcard Matching
Many shells do filename generation with wildcarding. You will implement a subset of the functionality
found in most shells. Before a command is executed, each command word should be scanned for the
characters * and ?. If any of these characters appears the word is regarded as a pattern. The word is

replaced with alphabetically sorted filenames that match the pattern. If no filename is found that matches
the pattern, the word is left unchanged but with the wildcard characters removed.

A * matches any string, including the null string. A ? matches any single character.

Examples of Commands
setenv PATH .:/usr/bin:/usr/local/bin:~ghi/bin:~/bin
setenv ARGPATH .:~ghi/bin:~/bin
cd ./bin
cd ~/bin
cd ~sjc/bin
cd ../misc/old
cd src/proj/first
ls project1
ls "~project1"
wc -l f1 f2 f3 | sort | page
command1 arg1 arg2 | command2 | command3 < file_in > file_out 2>&1 &
alias lo logout
alias rot13 "tr a-zA-Z n-za-mN-ZA-M"
rot13 < foo > bar
ls *.c foo.?
alias lo jj
alias
alias jj "ls -al"
lo
setenv this .
setenv lsthis "jj ${this}"
${lsthis}
bye
setenv LIB ~/bin
nm ${LIB}/libxc.a

Shell Prompt
You should design a simple prompt for your shell so that the user is aware when the shell is ready to
take on new commands. The design could be for a fixed string or even a character (e.g., “% “) or a string
composed from some variable such as the user name.

Helpful Hints
In order to parse the input line, you should use Lex and Yacc (documentation and tutorial will be
provided). A suggested scheme is for the parser to build a command table which contains for each basic
command: the command name, a count of its arguments, a pointer to a list of null terminated arguments,
an input file name, and an output file name. (Note that you may not want to use this table for built-in
command.) If a table is produced (i.e., the command is syntactically correct), then the shell should set up
the pipes and I/O redirection as indicated by the table (if any), and fork and exec processes as needed,
wait for children to exit, report any errors detected and repeat the process for the next command line.
The table should be reset before use with every new command. Built-in commands should be taken care
of inside the shell program itself. Errors should be handled gracefully, and the offending line number
should be printed out if the session is not interactive. In other words, the shell should never die, crash
or exit unexpectedly. If an error is detected, a message should be printed, the current command purged,
and the prompt displayed for the next command. You may use neither execlp nor execvp within
your shell, and you should not fork another shell (e.g., ksh, csh, sh, etc.) nor use the system nor
popen system calls to run your commands.

You should implement only the features described in this assignment handout for your shell, not
all the features of existing shells such as csh or ksh.

Extra Credit
Tilde Expansion
~name should be replaced with the home directory of user name.
~ when not followed by a user name should be replaced by the home directory of the current user.

You should only do tilde expansion at the beginning of a word. The rule for tilde expansion can
be summarized as follows: find the substring starting with the character after the ~ and ending with
either the end of the string or a /, whichever comes first. If this substring is null, use the value of the
HOME environment variable, else look up the substring in /etc/passwd using getpwnam() and extract
the user's home directory from the returned struct. You should not do tilde expansion inside quoted
strings.

File Name Completion
When typing a command to be executed by your shell, your shell should complete a partially-typed
filename or user name. If the word immediately preceding the cursor expands to an unambiguous
filename (with the current directory providing the default context) your shell should do the expansion
when the ESC character is typed. When the last (partial) word begins with a tilde, your shell should
complete it with a user name instead. For example

cd ~russ ESC
expands to

cd /homes/russo

Helpful Unix Commands
csh
open
close
dup (and dup2)
access
fork
execl
execve
chdir
ioctl
pipe
strings
perror
malloc
exit (and _exit)
getenv
getpwnam
environ(5v)
getpgrp
setpgrp
termio
wait
kill

Turning in Your Shell
You will submit this project through Canvas. You will use the sample Makefile provided to you to
generate an executable called “nutshell" when the command make is typed in the directory containing
all your sources and the Makefile. You must also have a README file that clearly specifies the features
that you have NOT implemented followed by a list of features that you have implemented. The first
feature you must try to implement in your shell is the I/O redirection from and to files. This is because
we will be testing your project by running it through a program that will invoke your shell with its
standard input redirected to come from each of several test files. Should this feature not work well you
will earn our wrath for making testing your shell a grading nightmare.

The README file should include in the first few paragraphs, a declaration of what each team member
did in the project. This should be detailed enough for us to understand how to grade each of the team
members individually if contributions are not balanced.

