
1

P RC grade: Resit work (2019/20) for Coursework #2

Deadline for submission 16:00, Friday 16rd April, 2021

Submission information

The work should be emailed as a single ZIP file attachment to the module leader at

C.Evans@mdx.ac.uk

Submission should comprise a single ‘ZIP’ file. This file should contain a separate, cleaned1, NetBeans project

for each of the three tasks described below. The work will be compiled and run in a Windows environment,

so it is strongly advised that you test your work in a Windows environment prior to cleaning and submission.

When the ZIP file is extracted, there should be three folders (viewed in Windows explorer) representing

three independent NetBeans projects as illustrated by Figure 1 below.

Figure 1: When the ZIP file is extracted there should be three folders named Task1, Task2 and Task3

Accordingly, when loaded into NetBeans, each task must be a separate project as illustrated by Figure 2

below.

Figure 2: Each task must be a separate NetBeans Project

To make this easier, a template NetBeans project structure is provided.

1 In the NetBeans project navigator window, right-click on the project and select ‘clean’ from the drop-down menu. This
will remove .class files and reduce the project file size for submission.

2

Task 1 (20 marks)

Create a NetBeans 8 project for this task, named Task1.

You are required to write a Java 8 program that opens and reads a delimited data file that is located relative

to the NetBeans project root folder. The delimited data file contains information about prize winning music

albums ranked by sales. The data file is called albums.txt. The data file should not be altered and should be

considered as a read-only data file.

Within the ‘albums’ data file, there are 20 entries that each represent a single album. On the first line of

each album entry there are six data fields representing the following information (in order): the current sales

ranking, the title of the album, the name of the artist, the year the album was released, and the total

number of sales to date (‘M’ denotes million and ‘K’ denotes thousand). The first line is then followed by the

list of song tracks for the album (one per line, in the original published order), with each track indicating the

duration of the song (minutes:seconds) in braces. Each album entry is separated by a dashed line in the text

file.

You are required to implement a Java class to represent an album. The program should parse the data file,

create an object for each album, and store all the objects into a suitable collection. Figure 3 provides a

partial UML class representation of the class that you will need to implement. It indicates required data

members and accessor (i.e., getter) methods that map to those data members, and a constructor, and a

toString() method. It is left to you to determine class data types and how the Album objects should be

initialised.

Figure 3: UML class specification for Album class

Once all the objects are loaded into the collection, the program should present the User with a console-

based menu to interact with the data set. This menu should loop until the User enters a character to exit the

menu (e.g., zero as illustrated below). In addition to an exit option, the menu should offer three other

options: list all albums, select a single album to view, and search in song titles.

3

On starting the program, the following menu should be displayed to the console:

List albums.........1

Select album........2

Search titles.......3

Exit................0

Enter choice:>

The User can simply exit the program by entering zero. The three other menu options allow the User to

inspect the information in the data set (note again that this program is entirely read-only and there is no

requirement to add, update or delete any part of the data set). The necessary interaction of the program

with respect to these options is illustrated in Appendix A.

Note that console output should be neatly formatted, and some consideration will be given to formatting

when the program is assessed. In particular, when the option to view a single trade company details is

selected, it must result in the invocation of the toString() method for that particular Album object. You are

encouraged to explore and utilise a StringBuilder object when implementing the toString() method for the

Album class.

4

Task 2 (25 marks)

Create a new NetBeans project, called Task2.

For this task you are required to write a Java 8 program that incorporates a series of classes that represent

the core logic of an application and provides a NetBeans 8 console user interface. The required Java

application relates to a proposed software system to manage some aspects of charity running events over a

particular year. Below is an initial description of the system domain with a few very simple use cases (i.e.,

just simple, natural language statements).

System domain

The charity organises several running events each year. There are two kinds of running event: fun runs which
are over 5 km, and half-marathons. A 5 km fun run takes place in a park whereas a half-marathon takes place
at either a park or a town. A venue of either kind (park or town) may host many charity running events over
the course of the year.

Each charity running event has a specified date and start time, with each event being on a different date.
Several hundred competitors can enter for each event. Each competitor can enter multiple events per year
but can only have a single entry per event. Each entry for an event is allocated an event number which must
be unique amongst all entries for that event. All competitors entering for a half-marathon must be 16 or
over but there are no age restrictions on 5 km fun runs.

Use cases

1. List Event Information. The user of the software system identifies a running event by selecting it
from a list provided by the system. Once an event is selected, the system displays the name of the
event’s venue, along with the current number of entries for that event. If the event is a half-
marathon, the system also displays the number of water stations along the route of the race.

2. List Venue Details. The user of the software system identifies a venue by selecting it from a list

provided by the system. Once a venue is selected, the system displays a list of the dates and start
times of each running event taking place at that venue and, in the case of a park, the number of
changing facilities available there. If there are no events taking place at the venue the system
informs the administrator of this fact.

3. Search Competitor’s Event Entries. The administrator identifies a competitor by entering a
name, or partial name. For all competitors that match, the system displays the competitor’s
name and age. For each running event for which the competitor has an entry, the system
displays the event date, along with the event number the competitor has been allocated for
that event. The system also states whether the event is a 5 km fun run or a half-marathon.

Your task is to design a Java 8 program for the charity running event management system described above,

which provides a console-based (text I/O) user interface that facilitates the three listed use cases. An initial

analysis of the domain has already been completed, and a class model has been designed as shown in Figure

4.

5

Figure 4: Class model of the charity run domain

The class diagram above is provided as a design for your Java implementation. That is to say, your

application must include Java classes for the above class model as a minimum, i.e., you are allowed to extend

the model if you wish to, but the above model must be implemented. You are not required to submit any

UML for this task.

So that the use cases can be tested using the console-based User interface, your application will require

some ‘dummy’ data to be pre-coded into the application. This should be achieved by ‘hard-coding’ data

within the Java program. It should not use an external database link (e.g., such as an SQL database). There is

no requirement to insert or update any data for the task via the use cases. All pre-coded data should be

read-only. When assessing your overall design and implementation, some consideration will be given to

applications that demonstrate good encapsulation of system components.

6

Task 3 (15 marks)

Create a new NetBeans project, called Task3.

For this task you are required to program a JavaFX Graphical User Interface (GUI), with a focus on layout and

event handling.

This program must be coded as a JavaFX program following the approach described in Chapters 14 to 16 of

the kortext. It must not be created using a visual drag-and-drop tool, and must not be an FXML program,

neither of which have been taught on the module. If the submission is either a drag-and-drop application, or

a FXML application, then it will simply be awarded zero marks.

The GUI application that you need to create is a basic ‘surgery theatre controller’ simulation. The required

design is illustrated in Figure 5 below.

Figure 5: Surgery theatre controller simulation user interface

The application comprises several regions representing controls for clocks (a real time and an elapsed time),

room temperature, humidity and pressure, lighting control, and a medical gases display. Each area on screen

comprises JavaFX nodes and controls, such as buttons, labels, text, image views and graphical shapes.

a) Write a JavaFX program that replicates the GUI layout and design as illustrated in Figure 5. Styling of

widgets must be achieved programmatically using the relevant ‘setStyle’ method for the respective Node

objects. In other words, all styling should be contained within the Java code and not by use of a separate

CSS file.

b) With reference to the seven regions in the display, User interaction should be as follows:

• The ‘medical gases’ region has no interaction and is purely a visual display.

7

• The ‘daytime clock’ region should have no user interaction but displays the current time which can be

derived programmatically in Java from the CPU system clock.

• For the ‘elapsed time’ region (which displays seconds, minutes, and hours), a timer that increments each

second should be started when the User selects the ‘start’ button. On selecting the ‘stop’ button the

timer should halt. Selecting the ’start’ button again will continue the timer from its current setting (i.e.,

continual selection of start/stop should act like a pause and resume feature). Selecting the ‘reset’ button

should set the elapsed time back to zero.

• For the temperature control region, the selection of the up/down buttons should increment and

decrement the temperature display accordingly, in increments of 0.1 degrees Celsius. In addition, the

temperature setting should not exceed 27.5 degrees Celsius, or drop below 10.0 degrees Celsius.

• For the humidity control region, the selection of the up/down buttons should increment and decrement

the humidity display accordingly, in increments of one percent. In addition, the humidity setting should

not exceed 55 per cent, or drop below 30 percent.

• For the pressure control region, the selection of the up/down buttons should increment and decrement

the pressure display accordingly, in increments of 10 kPa. In addition, the pressure setting should not

exceed 120 kPa, or drop below 50 kPa.

• For the light control region, each of the three light controls has buttons to increase or decrease the light

setting. There are six light setting levels in each case. If the User presses the increase (+) button the light

setting moves to the next level, and if the User presses the decrease (-) button the light seeing moves to

the previous level. The result of this interaction is illustrated in Figure 6, which illustrates the results of

interactions in several regions of the display.

Figure 6: Result of event interaction with the surgery theatre controller simulation

8

Appendix A: Console interaction examples for Task 1

Option 1: list albums

On selecting option 1, the User should be presented with a neatly formatted listing of the albums. The data displayed should be ordered by the sales ranking, and

include the album title, the artist, year of release and sales-to-date. To select a single album to view its full details, the User should be prompted to enter the sales

ranking (i.e., option 2).

--

| Rank | Title | Artist | Year | Sales |

--

| 1 | Whatever People Say I Am That's What I'm Not | Arctic Monkeys | 2006 | 1.95M |

| 2 | Different Class | Pulp | 1996 | 1.33M |

| 3 | Franz Ferdinand | Franz Ferdinand | 2004 | 1.3M |

| 4 | The Seldom Seen Kid | Elbow | 2008 | 1.11M |

| 5 | Dummy | Portishead | 1995 | 920K |

| 6 | Elegant Slumming | M People | 1994 | 759K |

| 7 | Screamadelica | Primal Scream | 1992 | 715K |

| 8 | XX | The XX | 2010 | 626K |

| 9 | Bring It On | Gomez | 1998 | 502K |

| 10 | A Little Deeper | Ms Dynamite | 2002 | 498K |

| 11 | The Hour OF Bewilderbeast | Badly Drawn Boy | 2000 | 460K |

| 12 | An Awesome Wave | Alt-J | 2012 | 445K |

| 13 | Myths Of The Near Future | Klaxons | 2007 | 351K |

| 14 | New Forms | Roni Size/ Reprazent | 1997 | 336K |

| 15 | Boy In Da Corner | Dizzee Rascal | 2003 | 310K |

| 16 | Suede | Suede | 1993 | 301K |

| 17 | Stories From The City, Stories From The Sea | PJ Harvey | 2001 | 301K |

| 18 | Psychodrama | Dave | 2019 | 241K |

| 19 | I Am A Bird Now | Antony & The Johnsons | 2005 | 233K |

| 20 | Konnichiwa | Skepta | 2016 | 207K |

--

9

Option 2: select album

On selecting option 2, the User should be prompted to enter the sales ranking of a listed album (that was

displayed when option 1 was chosen). Following this, all the details of that album should be displayed, as

illustrated below. This should be achieved by invocation of the relevant Album object’s toString() method.

Console output should be neatly formatted.

List albums.........1

Select album........2

Search titles.......3

Exit................0

Enter choice:> 2

Enter album rank from list [1 - 20] :> 19

Album title: I Am A Bird Now

Artist: Antony & The Johnsons

Year of release: 2005

Sales to date: 233K

Track list:

|No. |Title |Mins|Secs|

|1 |Hope There's Someone | 4| 21|

|2 |My Lady Story | 3| 33|

|3 |For Today I Am a Boy | 2| 36|

|4 |Man Is the Baby | 4| 9|

|5 |You Are My Sister | 3| 59|

|6 |What Can I Do? | 1| 40|

|7 |Fistful of Love | 5| 52|

|8 |Spiralling | 4| 25|

|9 |Free at Last | 1| 36|

|10 |Bird Guhl | 3| 14|

List albums.........1

Select album........2

Search titles.......3

Exit................0

Enter choice:>

10

Option 3: search song titles

On selecting option 3, the User should be prompted to enter a ‘search string’ to match against the song titles

of all the albums. All searches should be case insensitive. The program should return a listing of any songs

that match the search string, with the section that matches in upper-case. The returned matches should first

display the album and title, followed by the songs that match the search string, including their track number.

It is possible that multiple songs can match a given search string, in which case they should be listed by track

number.

List albums.........1

Select album........2

Search titles.......3

Exit................0

Enter choice:> 3

Enter search word or phrase > night

Artist (Franz Ferdinand) Album (Franz Ferdinand)

Matching song title(s):

Track 2. Tell Her ToNIGHT

Artist (M People) Album (Elegant Slumming)

Matching song title(s):

Track 1. One NIGHT in Heaven

Artist (The XX) Album (XX)

Matching song title(s):

Track 10. NIGHT Time

List albums..........1

Select album.........2

Search song titles...3

Exit.................0

Enter choice:> 3

Enter search word or phrase > animal

Artist (Suede) Album (Suede)

Matching song title(s):

Track 2. ANIMAL Nitrate

Track 10. ANIMAL Lover

List albums.........1

Select album........2

Search titles.......3

Exit................0

Enter choice:>

