
Milestone 4 – Artificial Intelligence

This is an INDIVIDUAL assignment.

Late Policy

See syllabus for late policy.

Use Unity version: <SEE SYLLABUS FOR REQUIRED VERSION NUMBER>

Description

The goal for this assignment is to modify a copy the Minion from CS4455_M1_Support (or your
M1, M2, or M3) to be AI-controlled and run around a waypoint loop. You will use Unity’s
NavMeshAgent to control the steering behaviors. You will also implement a basic state machine
to instruct the NavMeshAgent what to do.

The Minion will visit 5 different stationary waypoints spread across the extent of the scene (this
must be visible in your scene). Then, the minion will use position prediction to intercept a sixth
waypoint. This moving waypoint should be animated to move back and forth between two points
using Mecanim animation.

Waypoints should be made from primitive GameObjects with the collider removed/disabled (e.g.
a colored sphere or cube). This means that the meshRenderers are still present and enabled! We
need to be able to see them.

Steps:

First, you will configure a minion to use the NavMeshAgent to move around instead of keyboard

control.

1.) Utilize a fixed camera looking down on your scene instead of the chase cam. It should
look like this:

2.) Clone the Minion_noRootMotion and name it AI_Minion

3.) Remove all the components related to human character control
(CharacterInputController, MinionBasicControlScript, MinionScript)

4.) Add a NavMeshAgent component to the AI_Minion

5.) Create a new script MinionAI

6.) Require and reference component UnityEngine.AI.NavMeshAgent

7.) Grab a reference to the Minion’s Animator as well

8.) Add a public array of GameObjects to MinionAI named waypoints.

9.) Add an int currWaypoint property

10.) Create a private method setNextWaypoint(). This method should analyze currWaypoint
and waypoints to increment currWaypoint and loop back to zero if currWaypoint is too
big for the array. Additionally, the navMeshAgent should be updated of the new
waypoint with SetDestination(). You will set to
waypoints[currWaypoint].transform.position. Add error handling if the array is zero
length.

11.) In Start(), call setNextWaypoint(); Make sure that currWaypoint is first initialized with

a value that will cause setNextWaypoint() to go to the 0th item. (-1 might work for you)

12.) In Update() also call setNextWaypoint(), but only if the navMeshAgent has reached the

target waypoint. You can figure this out with navMeshAgent.remainingDistance, but you
will also want to check that navMeshAgent.pathPending is not true so that being near a
waypoint doesn’t cause rapid iteration through the waypoints before the new path can
be found. More complicated NavMeshAgent implementations may necessitate
NavMeshAgent.hasPath and NavMeshAgent.pathStatus.

13.) In the editor, create 5 waypoints out of GameObjects with no colliders but keep them

visible! You should be able to see them in both the editor and game view. Spread them
out to make full use of the map. Read ahead about the moving waypoint if you want to
plan to leave room for it.

14.) Populate your AI_Minion’s waypoints (in Inspector) with these waypoint GameObjects

(first manually increase the size of the array as appropriate)

15.) Using Unity’s Navigation window, bake a NavMesh. Make sure you see blue navigable
area over most of the scene.

16.) Confirm that your AI_Minion is in a blue navigable area and that he’s not on top of any

other characters.

17.) Confirm that all your waypoints are also navigable and reachable from each other and
the Minion

Now you can run the game and you should see the minion translate around from waypoint to
waypoint. He will likely be sunk into the ground and will not be making any step animations.

Next up, you will get the bouncy step animation working.

1.) Modify your AI_Minion’s NavMeshAgent component “Base Offset” to 0.75. This will fix
the issue with the model sinking into the ground.

2.) Modify your MinionAI script in Update() to tell the animator the forward animation
parameter according to the navMeshAgent component’s speed. It should look something

like: anim.SetFloat(“vely”, agent.velocity.magnitude / agent.speed). Note that
agent.speed is max speed.

Now test the game. You should see the minion hopping around and not sunk into the ground!

The last couple tasks are to:

1.) Convert your MinionAI script into a state machine. I recommend the “Procedural State
Machine” for simplicity. See AI Tips section below.

2.) Add a moving waypoint that the Minion uses prediction to track down. (You can use
Mecanim with an approach similar to the elevator from M2. However, adjust the
animation curves so that the waypoint moves linearly without acceleration.) Make sure
the waypoint is always just above the navmesh (blue area) and not going over an
obstacle or through a wall. See screen below for the location that you should use:

(See the red arrow and the right side opposite the end with the ramp.)

Your state machine should have at least two states. One state can be for your 5 stationary

waypoints. The second state can be for your one moving waypoint. The states should loop forever
(e.g. state0->state1->state0->state1->…). You may find the use of a state machine for this simple
purpose a bit silly, but focus on understanding the mechanics of state transitions so that it helps
on your team projects.

Note that your AI may never completely reach the waypoint with default NavMeshAgent settings
so you may need to relax the condition for the distance required to have success. Check out
NavMeshAgent.stoppingDistance to help deal with this issue (and
navMeshAgent.remainingDistance – navMeshAgent.stoppingDistance for new waypoint reached
condition).

For prediction, implement a simple distance function to determine lookahead time (discussed in
class and in the basic algorithm is in the lecture notes). Then use the moving waypoint’s velocity
and position to extrapolate based on this look ahead time. You can use the following component
script to get a velocity from the animated waypoint. Then you can use GetComponent() to get
the VelocityReporter from a reference to the moving waypoint.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class VelocityReporter : MonoBehaviour {

 private Vector3 prevPos;

 public Vector3 rawVelocity

 {

 get;

 private set;

 }

 public Vector3 velocity

 {

 get;

 private set;

 }

 public float smoothingTimeFactor = 0.5f;

 private Vector3 smoothingParamVel;

 // Use this for initialization

 void Start () {

 prevPos = this.transform.position;

 }

 // Update is called once per frame

 void Update () {

 rawVelocity = (this.transform.position - prevPos) / Time.deltaTime;

 velocity = Vector3.SmoothDamp(velocity, rawVelocity, ref smoothingParam

Vel, smoothingTimeFactor);

 prevPos = this.transform.position;

 }

}

Be careful extrapolating as you might end up with a predicted position off the NavMesh. You can
limit your lookahead time value with Mathf.Clamp() and also use NavMesh.SamplePosition()
(https://docs.unity3d.com/ScriptReference/AI.NavMesh.SamplePosition.html) and
NavMesh.Raycast()(https://docs.unity3d.com/ScriptReference/AI.NavMesh.Raycast.html) to see
if the waypoint would hit the edge of the NavMesh if it moved from its current position to the
extrapolated position. NavMesh.Raycast() is probably the most useful of the two. If there is a
hit, then either don't extrapolate or shorten the amount of extrapolation, perhaps just a bit
before the raycast’s collision point.

Dynamically place a tall, skinny box (destination tracker) at the location that your minion is
predicting for the duration that it is seeking the moving waypoint. This box should not have a
collider and should be visually distinct from your waypoint in both size and color and be able to
be seen if it overlaps your moving waypoint. It’s ok if this destination tracker shows up when the
minion is moving towards static waypoints as well. The destination tracker should move as
conditions change and clearly be ahead of the moving waypoint until the minion converges.

Lastly, check out all the public properties of the navMeshAgent. Tweak speeds, accelerations,
turn rates for best visual results. Make sure that your minion approaches the moving waypoint
from very far away so that prediction can best be observed. Also, coordinate the NavMesh bake
settings with your navMeshAgent dimensions.

https://docs.unity3d.com/ScriptReference/AI.NavMesh.SamplePosition.html
https://docs.unity3d.com/ScriptReference/AI.NavMesh.Raycast.html

Itemized Requirements:

1.) AI controlled Minion visits 5 stationary waypoints (that are visible) (30 pts)
2.) AI controlled Minion heads off moving waypoint (that is visible) and has a visualization of

minion’s predicted position (visible destination tracker) (30 pts)
3.) AI is controlled by procedural state machine of at least 2 states where the minion visits

5 stationary waypoints, then heads off moving waypoint, then goes back to visiting 5
stationary waypoints, then heads off moving waypoint,….going on forever in that pattern
(20 pts)

4.) Minion is animated with steps and not sunk into ground (20 pts)
5.) Use the Auditor to test your build

Submission:

You will submit a Zip/7Zip of your project via Canvas. If the file is too big for Canvas, then submit
a link to a private cloud hosting (such as GT’s Box license). Please clean the project directory

to remove unused assets, intermediate build files, etc., to minimize the file size and make
it easier for the TA to understand. Refer to Assignment Packaging and Submission on the
Canvas Syllabus for further details.

The submissions should follow these guidelines:

a) Your name should appear on the HUD of your game when it is running. 
b) Follow the Assignment Packaging and Submission steps including:

i. ZIP file: <lastName_firstInitial>_m<milestone number>.zip
ii. Complete Unity Project
iii. Builds
iv. Readme file should be in the top-level directory: <lastName_firstInitial

>_m<milestone number>_readme.txt and should follow base requirements from
Assignment Packaging and Submission

v. Size reduction

Submission total: (up to 20 points deducted by grader if submission doesn’t meet submission
format requirements)

Be sure to save a copy of the Unity project in the state that you submitted, in case we have
any problems with grading (such as forgetting to submit a file we need). Do not alter or
remove your submission from cloud hosting until your grade has been returned.
AI Tips

State Machine Implementation:

Don’t confuse discussion of AI state machines with the Mecanim Animator state machine. State
machines can be used for lots of things. There is one for the animation system, and you will be
implementing a different one for your AI. These state machines may likely interact in some way,
but are independent implementations.

Procedural State Machine:

You might consider a procedural approach similar to below:

public enum AIState
{

 Patrol,
 GoToAmmoDepot,
 AttackPlayerWithProjectile,
 InterceptPlayer,
 AttackPlayerWithMelee,
 ChasePlayer
 //TODO more? states…
};

public AIState aiState;

// Use this for initialization
void Start ()
{
 aiState = AIState.Patrol;
}

void Update ()
{

 //state transitions that can happen from any state might happen here
 //such as:
 //if(inView(enemy) && (ammoCount == 0) &&
 // closeEnoughForMeleeAttack(enemy))
 // aiState = AIState.AttackPlayerWithMelee;

 //Assess the current state, possibly deciding to change to a different state
 switch (aiState) {

 case AIState.Patrol:

 //if(ammoCount == 0)
 // aiState = AIState.GoToAmmoDepot;
 //else
 // SteerTo(nextWaypoint);

 break;

 case AIState.GoToAmmoDepot:

 //SteerToClosestAmmoDepot()

 break;

 //... TODO handle other states

 default:

 break;

 }

}

Test and develop one AI feature at a time, perhaps hard-coding your AI to stay in one state as
you work on it.

If you need to slow down your AI for gameplay debugging, just put a cap on the maximum
mecanim speed input passed from your steering calculations. For instance, if 1.0 is full speed
then only allow a value of 0.8 for 80% of full speed. You can also adjust your NavMeshController
top speed.

You might also consider an object-oriented approach: https://blog.playmedusa.com/a-
finite-state-machine-in-c-for-unity3d/

An advanced fully root motion NavMeshAgent example implementation is provided at:

This project demonstrates a much more complicated integration of the NavMeshAgent with root
motion. It handles both translation and turning.

https://github.gatech.edu/IMTC/CS4455_MecanimTute

In addition to basic state machines, you may be interested in Behavior Trees:

• Open Source NPBehave Unity plug-in
(https://www.assetstore.unity3d.com/en/#!/content/75884)

NPBehave builds on the powerful and flexible code-based approach to define behavior
trees from the BehaviorLibrary and mixes in some of the concepts of Unreal's behavior
trees. Unlike traditional behavior trees, event driven behavior trees do not need to be
traversed from the root node again each frame. They stay in their current state and

only continue to traverse when they actually need to.

Note: This is a new library that has potential, doesn’t have all the Unity Editor
integration as the now defunct RAIN AI and documentation is rather limited. However,
it is open source can be extended. It’s also unclear how easy it is to support root
motion based movement out-of-the-box.

• Rival Theory’s RAIN AI Unity plug-in NO LONGER AVAILABLE

General Projectile Tips:

You should be aware of the benefits of the atan2() function for calculating headings.
https://en.wikipedia.org/wiki/Atan2

A Normal distribution can be used to add some realistic aiming error to your AI, should you need
it for game tuning.

For tips on predictive aim, check out "Strategy #3 - Assuming Zero Acceleration"
under http://www.gamasutra.com/blogs/KainShin/20090515/83954/Predictive_Aim_Mathema
tics_for_AI_Targeting.php

https://blog.playmedusa.com/a-finite-state-machine-in-c-for-unity3d/
https://blog.playmedusa.com/a-finite-state-machine-in-c-for-unity3d/
https://github.gatech.edu/IMTC/CS4455_MecanimTute
https://www.assetstore.unity3d.com/en/#!/content/75884
https://en.wikipedia.org/wiki/Atan2
http://www.gamasutra.com/blogs/KainShin/20090515/83954/Predictive_Aim_Mathematics_for_AI_Targeting.php
http://www.gamasutra.com/blogs/KainShin/20090515/83954/Predictive_Aim_Mathematics_for_AI_Targeting.php

Other sections of the article give some tips on lobbed projectiles.

NavMesh Baking:

Don’t forget to mark objects as “static” if you want the navmesh baking process to pick up on
them. Also, objects need MeshRenderers and not just colliders for affecting the navmesh. Though
you can use NavMeshObstacles to carve out areas.

Coupling Animation and Unity navmesh:
Specifically refer to “Animation Driven Character using Navigation”
https://docs.unity3d.com/Manual/nav-CouplingAnimationAndNavigation.html

Also, a NavMeshAgent+Mecanim demo is here (scene CS4455_AI_Demo):
https://github.gatech.edu/IMTC/CS4455_MecanimTute

Note that the above demo is designed to be configurable via Inspector settings and can be used
with fairly minor changes for a variety of root motion based characters.

If implementing your own NavMeshAgent script from scratch:

Don’t forget to set navMeshAgent.updatePosition and navMeshAgent.updateRotation to false
since we want mecanim to control movement. Also, go ahead and implement OnAnimatorMove()
with full Mecanim control of transform:

this.transform.position = anim.rootPosition; //npc only changes pos if mecanim says so
this.transform.rotation = anim.rootRotation; //npc only changes rotation if mecanim says so

Additionally add NavMeshAgent position resets to OnAnimatorMove():

agent.nextPosition = this.transform.position; //pull agent back if she went too far

Try changing the NavMeshController’s default vehicle properties to match your root motion
performance envelope as best you can. Also, configure the NavMeshController to match your
capsule dimensions and other locomotion abilities. You can look at your individual animations in
the Inspector for a summary of your average velocity and angular velocity. Use these values from
your fastest running/turning animations for configuring your NavmeshController. You now need
to analyze the NavMeshAgent’s planned movements in (Fixed)Update() and map them to Mecanim
inputs (hint: normalize velocity and angular velocity relative to the performance envelope to get
in right form for mecanim inputs). Then start tweaking/filtering things slowly to reduce jittery
movement. For instance, a scaling factor on turn angles is useful to deal with turning that is too
aggressive. Finally, add filtering on your mecanim inputs using Lerp() to smooth out the last bit
of jitter (but only do so once you have exhausted all other tweaks). Some filtering strategies are
demonstrated in the github project above.

https://docs.unity3d.com/Manual/nav-CouplingAnimationAndNavigation.html
https://github.gatech.edu/IMTC/CS4455_MecanimTute

	Milestone 4 – Artificial Intelligence

