
Milestone 2 – Physics Simulation

This is an INDIVIDUAL assignment.

Late Policy
See Canvas course site for the late policy.

Use Unity version: <SEE SYLLABUS FOR REQUIRED VERSION NUMBER>

Description

In this assignment, you will be creating a number of physics objects and explore some
programmatic control of the physics simulation. You should use the project you submitted for M1
as the foundation. If you aren’t happy with your submitted M1, you can use the original github
project: https://github.gatech.edu/IMTC/CS4455_M1_Support

Tasks (100 points total)

Make sure the HUD displays your full name.

Implement the following objects in view of the camera at the start of your game (in 16:9/16:10
aspect). Read everything first to have an idea where to put the different objects.

While a few material colors are provided for you, you will need to create some of them!

Basic Rigidbodies with Collision Events
Make three (3) blue rigidbody spheres aligned roughly vertically that topple and roll off one
another as soon as the game starts. You may need to slightly offset horizontally to avoid perfectly
balancing. Modify the blue spheres to generate an event (BombBounceEvent already provided)
upon collision (e.g. OnCollisionEnter()). This event will be consumed by the AudioEventManager
and the bombBounceAudio (glass clink sound) will be played. The crates that are already in the
scene have a CrateCollisionReporter script that you might find of interest for completing this
task. (5 points)

Physics Layers Example
Make three (3) red rigidbody spheres aligned roughly vertically that belong to a physics layer
that does not allow collisions with other members of the same layer. Assigning Layers and tweaks
to the Physics Layers Collision Matrix are necessary. The end result should be the spheres collapse
into and interpenetrate with one another when the game starts. (5 points)

Compound Collider for Complex Geometry

Using the Asset Store, search for “Free Japanese Mask” and import it (looks like a stone mask of
a fox and the model is named “Kitsune”). Place it in your scene somewhere and scale size
uniformly by 10.0. Next add a rigidbody controller to the Kitsune GameObject. Add a few child
GameObjects that each contain a simple collider like capsules, cylinders, and boxes but are
otherwise invisible. Make sure these children do not have rigidbody components attached. The
union of these colliders should approximate the visual dimensions of the mask and collectively
provide a good collision shape. Orient the mask such that it falls over and tips on the nose upon
start of the game. This is an example of a compound collider physics object. (10 points)

Chain with Joint Constraints

https://github.gatech.edu/IMTC/CS4455_M1_Support

Create a yellow chain out of at least five (5) rigidbody GameObjects of your choosing and form
the chain with ConfigurableJoints. Hang it from up in the air somewhere. Orient the chain such
that it is swinging slightly at the start of the game. (10 points)

Mecanim-Animated Kinematic Elevator
Add an empty GameObject and name it ElevatorRoot. Create a blue child cube GameObject
called Elevator with zeroed out transform position and rotation. Scale it to look more like an
elevator platform. Add to the Elevator a rigidbody component configured to be kinematic. With
the Elevator object selected in the Hierarchy, open the Animation Window. Click the “Create”
button within the Animation Window. Save the animation as “Elevator” under Assets/Animations.
Confirm that the Elevator GameObject now has an Animator component with AnimatorController
of same name assigned.

On the Animation Window, add a property of Transform->Position (click the plus to add it). Add
a keyframe midway through your animation so that the Elevator rises and then goes back to the
original position. Confirm the animation is set to loop (Inspector view of the Elevator animation
selected in the Project View Assets). Test it out. You may need to adjust the speed multiplier in

the Animator window view to slow things down. If you don’t like the placement of the elevator
you can move the “ElevatorRoot” without redoing the animation. You get similar benefits if you
want to make a prefab of the elevator and clone it multiple times.

Set the elevator’s Animator component update mode to “animate physics”.

Now add a red rigidbody sphere on top of the elevator that gets pushed up and then falls
repeatedly as the elevator goes up and down.

If you experience tunneling, double check the “animate physics” setting. Also try making elevator
and ball larger and slow down the elevator. Lastly, you can try changing the Rigidbody Collision
Detection mode settings.

(10 points)

Customized Center of Mass
Create a green Weeble Wobble or Punching Bozo. These are rounded bottom-heavy toys that
cannot be knocked over. Make it out of a capsule collider and a custom center of mass via the
Project:Assets/Scripts/Utility/RigidbodyCenterOfMass MonoBehavior with accompanying
RigidbodyCenterofMassHandler editor extension. (Be sure and read the script source to
understand how it works!) Place it at an angle so it is rocking back and forth at the start of the
game. (10 points)

Default Friction
Create a purple rigidbody box and place it on the ramp named BetterRamp in the Hierarchy. You
can see that it is gray and against a wall. Confirm that it does not slide down the ramp. (5 points)

Location of “Better Ramp”

Custom Friction (Low)

Next to the box implemented from the previous task, create a green rigidbody box. Modify it to
have a new PhysicsMaterial that has 0.1 dynamic and static friction and ‘Friction Combine’ set
to ‘minimum’. Make sure this box slides down “Better Ramp” when the game is played. (5 points)

Bouncy Rigidbody
Create an orange rigidbody sphere. Assign a new PhysicsMaterial that has a 0.9 bounciness and
‘Bounce Combine’ set to ‘maximum’. Place it a bit above the ground. You should see the ball
bouncing when the game plays. (5 points)

Ragdoll
Place the existing ‘Y_Bot’ asset (e.g., drag from Project Window) in the scene right above the
nearest hurdle.
(ProjectWindow:Assets/ModelsAndAnimations/YBot with Animations/Y_Bot/Y_Bot)
Run the Ragdoll Wizard via Edit Menu:GameObject->3D Object->Ragdoll…
Assign the bones as detailed in the image below. Make sure Y_Bot is aligned such that he flops
over the hurdle as he falls when the game starts. (15 points)

Scripting Forces
Make a black click beetle or jumping bean out of a capsule. You will need to write a MonoBehavior
script that intermittently applies a force to the rigidbody in FixedUpdate(). An impulse or instant
velocity change for the force type will give a good jump effect. Liberal use of the Random
functions will make the behavior more realistic (e.g. bounded but random time between jumps,
jump angle and force magnitude, etc.). Also, jumps should only occur when the GameObject is
on the ground (the ground is tagged “ground” and the characters have demonstrations of
grounded checks). (20 points)

Make a Pause Script
To better view what you implement (especially in builds), make a pause script that starts with
the game in paused mode and toggles via a letter “p” keypress. Create a new Monobehaviour
script with your logic and attach to an empty game object in your scene. You can pause by
manipulating Time.timeScale. You can use Input.GetKeyUp() as well. This will allow your grader
to unpause and observe your work after the Unity splash screen finishes. Make sure you test it
out in your build.

Congratulations, you have now experimented with many of the rigidbody physics simulation
capabilities of Unity and are ready to apply these features to your game project!

Task Checklist

Modify the scene to include all of the following within view of the camera at start of the game:

1.) Your name appears in the HUD

2.) three (3) blue rigidbody spheres with collision sounds
3.) three (3) red rigidbody spheres that don’t collide with one another
4.) Asset Store model “Free Japanese Mask” with custom compound collider
5.) yellow jointed chain made of at least five (5) rigidbody GameObjects
6.) blue kinematic rigidbody elevator using Mecanim animation with red rigidbody

sphere going for a ride
7.) green Weeble Wobble/Punching Bozo that tilts but can’t be knocked over
8.) a purple cube with rigidbody box that does not slide down the ramp
9.) green cube with rigidbody box that does slide down the ramp
10.) orange rigidbody sphere that bounces
11.) Y_Bot ragdoll that collapses over the hurdle
12.) black click beetle or jumping bean that jumps intermittently
13.) Make a pause script that starts the game paused and unpauses with “p” keypress
14.) submit project according to submission requirements (Make sure you pass audit)

Submission:

You will submit a Zip/7Zip of your project via Canvas. If the file is too big for Canvas, then submit
a link to a private cloud hosting (such as GT’s Box license). Please clean the project directory
to remove unused assets, intermediate build files, etc., to minimize the file size and make
it easier for the TA to understand. Refer to Assignment Packaging and Submission on the
Canvas Syllabus for further details.

The submissions should follow these guidelines:

a) Your name should appear on the HUD of your game when it is running. 
b) Follow the Assignment Packaging and Submission steps including:

i. ZIP file: <lastName_firstInitial>_m<milestone number>.zip
ii. Complete Unity Project
iii. Builds
iv. Readme file should be in the top-level directory: <lastName_firstInitial

>_m<milestone number>_readme.txt and should follow base requirements from
Assignment Packaging and Submission

v. Size reduction

Submission total: (up to 20 points deducted by grader if submission doesn’t meet submission
format requirements)

Be sure to save a copy of the Unity project in the state that you submitted, in case we have

any problems with grading (such as forgetting to submit a file we need). Do not alter or
remove your submission from cloud hosting until your grade has been returned.

Resources:

Scaffolding project for this assignment:
https://github.gatech.edu/IMTC/CS4455_M1_Support

Collision Action Matrix – This is very useful for understanding Unity’s collision rules
https://docs.unity3d.com/Manual/CollidersOverview.html

Event System Tutorial - https://unity3d.com/learn/tutorials/topics/scripting/events-creating-
simple-messaging-system

Also, be aware that the tutorial’s EventManager has been improved and can be found in the M1
project resource.

https://github.gatech.edu/IMTC/CS4455_M1_Support
https://docs.unity3d.com/Manual/CollidersOverview.html
https://unity3d.com/learn/tutorials/topics/scripting/events-creating-simple-messaging-system
https://unity3d.com/learn/tutorials/topics/scripting/events-creating-simple-messaging-system

	Milestone 2 – Physics Simulation

