

Lab 4: Threading

COP4600 – Operating Systems

Overview
The aim of this exercise is to familiarize you with multithreading in C++. In the right situation, threads
can significantly speed up your programs by allowing parts of it to run concurrently rather than
sequentially. Here is a simple example:

Note the use of the ​join() ​function above. Without it, it would be possible for the main function to
finish executing and exit before the thread has completed execution.

Structure
To complete this exercise, you will be writing a program that spawns 10 threads, each of which will
attempt to do the same job. Due to the nature of threads, you’ll notice that they finish in a different order
every time.

1. Write a C++ program that takes a number as a command-line argument (i.e. ​./thread 1414​)

2. Write a function inside this program with two parameters: one is an ID number, and the other
will be the number passed in as a command-line argument.

a. This function will generate random numbers between 0 and 9999 until it generates one
that matches the number given as a command-line argument, then print “Thread <id>
completed.”

3. In your program’s main function, spawn 10 threads, each of which will call your new function
with a unique ID (0 through 9) and the number given as a command-line argument.

Note: Your threads must be spawned inside of a loop. You should NOT have 10 individual calls to
thread() in your program.

4. Finally, once all of your threads have finished generating numbers, print “All threads have
finished finding numbers.”

Note: In order to compile your program with threads, you will need to use the flags
-std=c++11 -pthread​ ​with the g++ command.

Enabling Race Conditions
In order to ensure that the execution of threads finish in a randomized order, you can use the ​nice
utility. ​nice​ is a program that allows setting or altering the priority of a process. You should give
your process the lowest priority to ensure that the CPU will execute it less often. In addition, you
should lower your virtual machine’s memory and maximize the number of cores. This will slow the
process down and cause the threads to execute out of order due to the interruptions and race
conditions.

Read about ​nice​ here: ​https://man7.org/linux/man-pages/man1/nice.1.html

Note: RAM and CPU settings differ depending on your machine. You should give your virtual
machine at least 512 MBs.

Submissions
You will submit the following at the end of this exercise on Canvas:

● C++ source file for your program
● Screenshot of the output from running your program ​twice​.

Figure 1: An example screenshot with output from running the program twice.

https://man7.org/linux/man-pages/man1/nice.1.html

