
Project 2 – Image Processing
Contents

Overview ... 2

Reading binary data ... 2

Viewing TGA files .. 2

File format description ... 3

Color Data ... 5

What’s in a pixel? ... 6

Storage .. 7

Writing a file ... 7

Ramping up ... 7

Image manipulations .. 7

Calculation tips ... 8

Rounding ... 8

Tasks ... 9

Testing your files .. 9

Writing Tests ... 10

Makefiles .. 11

Extra Credit ... 12

Pre-Submission Testing .. 12

Program name .. 13

Relative Paths ... 13

Slashes (forward, or backward?) ... 13

Testing on lab machines ... 13

Submissions .. 14

Tips .. 14

Optimization Tip ... 14

Grade Rubric ... 15

Point deductions .. 15

Overview
Lots of applications need to process images in some way. Load them, store them, write them back out to

files, scale them, rotate them, adjust the color in part (or all) of the image, etc. The purpose of this

assignment is to show you how you can perform some of these operations on a particular type of file.

You will be writing a program that does the following:

 Read in a number .TGA files in a binary format

 Process the image data store within those files in a variety of ways

 Write out new .TGA files in the same binary format

Reading binary data
Binary file operations are about two things: reading bytes from the file and putting them into memory,

or writing bytes from memory directly to the file. There is no conversion, no interpretation, and no

converting strings to numbers or vice-versa. It’s just bytes from the file to memory, or bytes from

memory to the file. Whether the data is simple or complex, it’s all just a series of these byte-copying

operations.

Refer back to the presentation BinaryFileIO on Canvas for a more detailed explanation on how to read

and write binary data.

Viewing TGA files
Some operating systems won’t let you open TGA files natively (looking at you, Windows), so you will

need to install some sort of viewer for them. If you already have a tool installed that lets you open and

view these, great.

Note: Not having a way of viewing these files will NOT stop you from writing code to open/read/write

TGA files, it just means you can’t open the file in an application to view its contents, which will make it a

bit more difficult to understand the process you are working with. Here are some tools you can install to

view TGA files:

Visual Studio – Say what?! Yes, Visual Studio includes an image editor, which will let you open and

manipulate image files on a basic level. Simply drag a TGA file into Visual Studio and it will open up.

Photoshop (CC or Elements, both have free trials)

https://www.adobe.com/products/photoshop.html

https://www.adobe.com/products/photoshop-elements.html

GIMP (GNU Image Manipulation Program) – a free, open-source alternative to the likes of Photoshop

https://www.gimp.org/

TGAViewer – A simple program whose only purpose is to open and view TGA files.

http://tgaviewer.com/download.aspx

https://www.adobe.com/products/photoshop.html
https://www.adobe.com/products/photoshop-elements.html
https://www.gimp.org/
http://tgaviewer.com/download.aspx

File format description
Since binary files are all about bytes, they are typically an unreadable mess to any program (or person)

that doesn’t know exactly how the data is structured. In order to read them properly, you must have

some sort of blueprint, schematic, or breakdown of how the information is stored. Without this

description of the file format, you would just be reading random combinations of bytes attempting to

get some useful information out of it—not the most productive process.

The TGA file format is a relatively simple format, though it has some options which can get a bit complex

in some cases. The purpose of this assignment is not make you a master of this particular image format,

so a few shortcuts will be taken (more on those later). First, a quick look at the file format:

Image Descriptor

ID Length

Color Map Type

1 byte Size of the Image ID field

Image Type

Color map specification
5 bytes across 3 variables

Image specification – 10
bytes across 6 variables

X-Origin
Y-Origin

Image Width
Image Height
Pixel Depth

Image Descriptor

Is a color map included?

Compressed? True Color? Grayscale?

1 byte

1 byte

Variable

2 bytes

2 bytes

1 byte

Image data
Variable length, based on

previous values

2 bytes

2 bytes

2 bytes

2 bytes

1 byte

1 byte

The good stuff. A number of pixels
equal to (Image Width * Image Height)

Y-Origin – 0 in our case

Image Width

Image Height

X-Origin – 0 in our case

FILE HEADER ENDS, IMAGE DATA BEGINS

FILE HEADER BEGINS, 18 BYTES TOTAL

Pixel depth – typically 8, 16, 24 or 32

OPTIONAL FOOTER DATA BEGINS (UNUSED IN THIS ASSIGNMENT)

Color Map Origin – 0 in our case

Color Map Length – 0 in our case

Color Map Depth – 0 in our case

So to start, there is a header. Every file format is potentially different, but In a TGA file the header data

takes up 18 bytes total, across a number of variables, and this information describes the rest of the file.

Depending on the specifics of the file (or your scenario), some of those variables may have a value of

zero, or they may be ignored. (In the case of the TGA format some of the values in the header were once

very important, but nowadays are not used—the format still has them for compatibility reasons.)

FOR THIS ASSIGNMENT: the files you work with will be 24-bit true color, uncompressed images. What

you need from this header are two things: The width of the image, and the height of the image.

From the header description, the image width and image height are at a 12 byte offset and 14 byte

offset, respectively, from the beginning of the file. You may find it helpful to (especially as practice) to

read each piece of data in the header into a structure. Then, once the header has been completely read,

you can go about using it for whatever purposes you have in mind. A structure for the header in this

case might look like this:

struct Header
{
 char idLength;
 char colorMapType;
 char dataTypeCode;
 short colorMapOrigin;
 short colorMapLength;
 char colorMapDepth;
 short xOrigin;
 short yOrigin;
 short width;
 short height;
 char bitsPerPixel;
 char imageDescriptor;
};

// Something like this...
Header headerObject;
file.read(&headerObject.idLength, sizeof(headerObject.idLength));
file.read(&headerObject.colorMapType, sizeof(headerObject.colorMapType));

IMPORTANT NOTE: If you print out a char or unsigned char variable, you get a symbol that corresponds

to its numeric value, instead of the number itself. For example:

char someVariable = 65;

cout << someVariable; // Prints out 'A' instead of 65

If you want to see the numeric value of a char variable instead of its symbol, you would have to cast that

to an integer:

char someVariable = 65;

cout << (int)someVariable; // Prints out 65 instead of 'A'

Sample file header output

Color Data

After the header is the really important part, the image data itself. In a .TGA file the image data is stored

in a contiguous block of pixels equal to ImageWidth * ImageHeight. The contents of a single pixel can

vary depending on the properties of the file, but for this assignment we are using images with 24-bit

color. This means that each pixel would contain:

1 byte (8-bits) for red data, 1 byte (8-bits) for green data, 1 byte (8-bits) for blue data

Each of those bytes will contain a value from 0-255, which makes unsigned char the perfect data type to

store them.

So if a file had a size of 200x300, it would contain 60000 pixels, each of which contains 3 bytes of data,

like this:

You could store that data in a single array of bytes 180000 elements long, create some Pixel structure

which contains 3 bytes, and then make an array or a vector of 60000 Pixels, etc. Often, when talking

about color, we describe them in RGB order—red, green, and blue. However…

IMPORTANT NOTE: In a .TGA file, the colors are stored in reverse order, such that the first byte is the

blue component, the second byte is the green component, and the third byte is the red component.

What about the order of the pixels themselves? In many image files (including .TGA files), the first pixel

in the file represents the BOTTOM LEFT corner of the image. The last pixel represents the TOP RIGHT

corner of the image. If you read, store, and write the pixel data in the same order, you don’t really have

to worry too much about this. If you wanted to copy data into a particular part of the image, however…

that can be a bit tricky. For example, to copy some 2x2 image into the top left corner would require you

change pixels 16, 17, 24, and 25.

red green blue

[0]

red green blue

[1]

red green blue

59999

…

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

Layout of an 8x4 image

So, to summarize: The file contains a header, which is 18 bytes in length. Stored within those 18 bytes

are pieces of information describing the image content—the width and height of the image, how the

color data is stored, and so on. All you need from the header is the width and the height. However,

when writing a file, you should provide ALL the header data, whether you are using it or not. Because of

this, you should store this data along with the image data itself.

What’s in a pixel?
Fundamentally, a pixel (short for picture element) is the smallest unit of data in an image, representing a

color at a specific location in the image. (Pixels also can mean a particular element from a display device,

but doesn’t matter for this assignment.) A pixel is represented by several components, often red, green,

and blue (RGB color), but possibly cyan, magenta, yellow, and black (CMYK color).

By changing the values of these 3 or 4 components, you can get any color you like. You may see them

stored as floating-point numbers from 0-1, but for this assignment you will treat RGB values as unsigned

chararacters, with a value from 0-255. For example:

Red: 255
Green: 0
Blue: 0

Red: 95
Green: 41
Blue: 215

Red: 255
Green: 0
Blue: 255

Red: 174
Green: 188
Blue: 206

RGB RGB RGB RGB RGB RGB RGB RGB

RGB RGB RGB RGB RGB RGB RGB RGB

RGB RGB RGB RGB RGB RGB RGB RGB

RGB RGB RGB RGB RGB RGB RGB RGB

Every pixel in the file has its own set of Red, Green, and Blue values

Storage
How to store the TGA file? You would need:

The header. 18 bytes worth of data (even if you really only care about 4 bytes – 2 bytes for width, 2 for

height). You will need all 18 bytes of this header data to properly write a .TGA file.

The pixels. A pixel is 3 values: R, G, and B, and each of those is a number from 0-255 (an unsigned char

fits this perfectly). You will need a way to store a lot of them; a medium-sized image that’s 512x512

contains 262,144 pixels.

That’s just the TGA data. That’s the information that goes in and out of the file. If you were storing this

data in a class, and using that class to help read/write the information, you might store additional data

to help you with the process. Exactly what that data is, is up to you.

Writing a file
Writing a .TGA file is a pretty straightforward process. You first write the header to the file, and follow

that with the image data. If you have any footer information, you would write that after the image data

(footers are NOT used in this assignment).

Ramping up
To get familiar with this process, see if you can do these exercises:

Load a file, and then write that same file data out with a different name – no changes, just a simple

passing of data from a file to memory, and then back to a (different) file.

Open an existing file, assign to all of the pixels a single color such as red (255, 0, 0). Save the file out.

Open an existing file, fill it with random colors (remember a color is made of multiple channels).

Write some code to create a brand new file from scratch—borrow some header values from an existing

file to get started, or create your own. Fill that image with a single color—create an all-red, or all-blue

image.

Image manipulations
There are many different ways that you can manipulate an image. Photoshop and similar programs have

dozens of different algorithms. The basic concept behind these manipulations is that you have 2 layers,

A and B. They get run through an algorithm to generate an output, C.

Implementation-wise, each “layer” is an image, each image is made up of some number of pixels, and

each pixel has a red, green, and blue component. So ultimately the combinations of A and B involve the

combination the red component of the first pixel of A with the red component of the first pixel of B, and

the green component of the first pixel of A with the green component of the first pixel of B, (ditto for

the blue component), and so on for each pixel, storing the results in the corresponding pixel of some

new image, image C.

A description of the different blending modes can be found here:

http://www.simplefilter.de/en/basics/mixmods.html

http://www.simplefilter.de/en/basics/mixmods.html

You will not be implementing all of those blending modes. For this assignment, you will be implementing

the Multiply, Subtract, Screen, and Overlay blending modes. In addition, you should be able to modify

the individual channels by adding a value to them (such as adding 20 to the red channel, or “adding” -20

to the blue channel), or by scaling them (such as scaling the green channel by 50%). The specific

operations you will have to perform are listed below, under the heading Tasks.

Calculation tips
The pixel data is stored in unsigned char variables, with values from 0-255. When modifying those

values, you may go over or under that range, which potentially causes some issues. For example, if you

wanted to boost the red of a pixel by 100, and the original value was 200, the final result would be 300,

but since the range of the unsigned char is 255, 300 would cause an overflow to 44.

Similarly, if you multiplied a value of 140 with a value of 78, the result of 10,920 would be just a tiny bit

too large. So what can you do?

In some cases, you might need to clamp values. In the case of addition/subtraction, you would clamp to

the maximum or minimum values of the data type after the operation… however, to avoid the

overflow/underflow issue, you might need to perform the calculation in a data type that can store a

larger range (like an integer), then clamp and reassign to another variable afterward.

For some operations (like multiplication), they work based on a normalized value, from 0-1. So, you

might convert your 0-255 value to a 0-1 value (dividing the original by the maximum), perform the

calculation with 0-1 values, and the convert back to the original range afterward (multiplying the 0-1

range by the maximum). You could also just multiply the original two values, and divide the result by

255… you’ve got options, and it’s up to you to decide how best to implement them.

Normalizing values is often used because it allows for the creation of formulae which can describe a

process which works in any situation, regardless of the specific values. For example you might deal with

a color range of 25-172, but by normalizing them to a 0-1 equivalent (which would require a little more

work than just dividing by 255 in this case), you can use with in the same sort of formula as anything

else.

Rounding
If you do convert values to and from floats, be aware that you may encounter some floating-point

precision issues, and may need to round your values. To do that, simply add 0.5f to the final value

before assigning back to an unsigned char variable. Why 0.5? If the result should be 80, but the floating

point calculation evaluated to 79.871 or some such, adding 0.5 would bring it up to 80.371, which then

gets truncated to 80. If the result should be 80, but the final calculation was as high as 80.4, adding 0.5

would give you 80.9, then truncated to 80.

Tasks
This assignment is broken into 10 different parts, each of which is worth a small portion of the overall

grade (the grading rubric is listed at the end of this document). For each of these tasks you will:

1. Load one or more files from the “input” folder

2. Perform some operation(s) on the loaded file(s)

3. Write the results to a new .TGA file (named part#.tga) in the “output” folder. The “examples”

folder has completed versions which you can use to test against your files. If your file is identical

to its counterpart in the examples folder, you’re done with that part!

For example:

Part 1: Load the file “layer1.tga” and “pattern1.tga” (both from the input folder), and blend them

together using the Multiply algorithm (“layer1” would be considered the top layer). Save the results as

“part1.tga” (in the output folder), and your file should match EXAMPLE_part1.tga (from the examples

folder).

1. Use the Multiply blending mode to combine “layer1.tga” (top layer) with “pattern1.tga”

(bottom layer).

2. Use the Subtract blending mode to combine “layer2.tga” (top layer) with “car.tga” (bottom

layer). This mode subtracts the top layer from the bottom layer.

3. Use the Multiply blending mode to combine “layer1.tga” with “pattern2.tga”, and store the

results temporarily. Load the image “text.tga” and, using that as the top layer, combine it with

the previous results of layer1/pattern2 using the Screen blending mode.

4. Multiply “layer2.tga” with “circles.tga”, and store it. Load “pattern2.tga” and, using that as the

top layer, combine it with the previous result using the Subtract blending mode.

5. Combine “layer1.tga” (as the top layer) with “pattern1.tga” using the Overlay blending mode.

6. Load “car.tga” and add 200 to the green channel.

7. Load “car.tga” and scale (multiply) the red channel by 4, and the blue channel by 0. This will

increase the intensity of any red in the image, while negating any blue it may have.

8. Load “car.tga” and write each channel to a separate file: the red channel should be

“part8_r.tga”, the green channel should be “part8_g.tga”, and the blue channel should be

“part8_b.tga” (Hint: If your red channel image appears all red, try writing [Red, Red, Red]

instead of [Red, 0, 0] to the file—ditto for green and blue!)

9. Load “layer_red.tga”, “layer_green.tga” and “layer_blue.tga”, and combine the three files into

one file. The data from “layer_red.tga” is the red channel of the new image, layer_green is

green, and layer_blue is blue.

10. Load “text2.tga”, and rotate it 180 degrees, flipping it upside down. This is easier than you think!

Try diagramming the data of an image (such as earlier in this document). What would the data

look like if you flipped it? Now, how to write some code to accomplish that…?

Testing your files
For all but the simplest of programs, tests are needed to verify that process was executed correctly. We

write code to do things more quickly than we can, whether it’s a single, complex problem, or many

smaller problems. Testing should be no different. Why verify something by hand when you can have a

program do it for you? (The one small issue… you have to write that program first!)

The overall idea of ANY test is the same:

Does <THING> meet <CRITERIA>, where the criteria are equal to some value, less than or greater than

some value, etc.

The tests are always the same. Always. It’s the DATA that can get complex. You might have a class object

with 35 different variables (some of which may be complex class objects that have their own dozens of

variables, some of which may be complex class objects, etc…), or… maybe just a few integers that need

to be compared. When creating tests, think of these things:

1. What are all the pieces of significant data in this scenario? The word SIGNIFICANT is

important—sometimes you may have data that can be ignored for tests, while in some cases

every single class variable, down to the lowest boolean or character variable must be a match.

2. For each of those significant pieces, are they equal to that of the other object? If A and B both

have 8 different variables, is A.variable1 equal to B.variable1? What about A.variable2 and

B.variable2, etc.

In this assignment you are dealing with image files. The rules of programming have not suddenly

changed because of this! The above concepts are still the same. Writing a program to compare data is

still the way to do things. Consider the following two images:

Left: “True” red—255, 0, 0 Right: 254, 0, 0—a convincing impostor

Those two images look the same. They have the same shape, same color, etc. However, they are very,

very different. Between the two of these, they have 0 pixels in common! Just looking at them, however,

it’s impossible to tell. So we write tests. Comparing a single pixel of that image to the same pixel in the

other would reveal that the G and B values (both 0) are equal in each image, but the red values are not.

If we want ALL data to be the same for an equality check, that check would fail.

Writing Tests
How you show the results of a particular test? Imagine this simple scenario: You have two integers, with

values of 2 and 4. You pass them to a function called Add(), which adds them and returns the result.

How would you test this? What would the code look like? Perhaps something like this:

cout << "Calling Add() with 2 and 4\n";

// Hard-code values to test against known values, known results
int result = Add(2, 4);
cout << "Expected result: 6" << endl;
cout << "Actual result: " << result << endl;

if (result == 6)
 cout << "Test successful!\n";
else
 cout << "Test failed!\n";

The output for such a test might resemble something like following image:

A simple test of a function

Now you could repeat this process for a dozens of other parts of your code, and display all the results at

the end (something you’ve seen already on zyBooks):

Every time you make any changes to your code, these tests could be executed, constantly keeping you

updated as to whether or not your code is working correctly. It requires effort to create these tests, but

the payoff in saved time is considerable (especially in large programs where you may have hundreds or

even thousands of these tests).

For this project:

The files in the examples folder can be used to compare against your output. If you load one of those

files and compare it against a file you created, ALL of the data elements should be 100% identical. If

even one component of one pixel is off by the tiniest amount, it is a different image. Every byte/variable

of the header must match, and every pixel must match, exactly.

 “I opened both images up and they looked the same” is NOT a valid defense if your images do not

match.

Makefiles
For this project you are going to use a simple makefile to help you build your project from the

command-line interface (to assist with building/grading your project). Check out the page on Canvas (a

link is on the Project 2 assignment page) for more information on the process of creating a makefile.

Extra Credit
Value: 10 points (toward the maximum 20 points of extra credit you can receive in this course)

Task: Create a new file that is the combination of car.tga, circles.tga, pattern1.tga, and text.tga. Each

source image will be in a quadrant of the final image, and the result should look like the image below.

The original images should not be modified in any way; the final image will have to be large enough to

accommodate all of them.

Save this file in the output folder, and name it extracredit.tga

Pre-Submission Testing
Unlike previous assignments where you can submit and check output against the output in Zybooks, you

must be certain your code works on your end before submitting it, as you only get one graded

submission for this assignment.

How to verify that your program runs properly? First, let’s look at how your code and your project

environment should be structured. You may work on your project in any environment you wish, but

your final submission will be tested in an environment like this:

All of this is going to be setup so that, in order to build and execute your program, you or someone else

(whomever is grading your project, for example) can simply type the following from a command-line

prompt within the directory containing your makefile and src folder:

1. make (or mingw32-make or similar, depending on your compiler)

2. the name of your program

The result of that process should all the images necessary for the completed “tasks” described earlier,

and listed below.

Program name
To make testing easier (for us), please name your executable project2.out (you can do this with the -o

flag of your makefile rule). If you are running on Windows, this will still work even though typically

executables have an extension of .exe. If you’re running on a Unix-based OS, you may already be familiar

with .out files.

Relative Paths
DO NOT hard-code paths to files. Instead, use paths RELATIVE to

where the executable is. For example, given the example setup of a

program and some files/directories, nothing special would be required

to open “datafile.txt”. However, if that same file was placed in either

of the input/output directories, you would have to specify

“input/datafile.txt” or “output/datafile.txt”

You should absolutely not try to read or write to “Q:/MyStuff/ClassWork/lol/input/datafile.txt”

Slashes (forward, or backward?)
Different operating systems use different slashes. Windows, for example, will use backslashes to

indicate different directories, so you’ll see something like “C:\SomeFolder\SubFolder” anywhere paths

are used. If you write code that happens to use forward slashes (such as “C:/SomeFolder/SubFolder”)

your code will work just fine. On MacOS or other Unix system, forward slashes are used, and backslashes

will NOT work. For this assignment use FORWARD slashes to ensure compatibility across systems.

Testing on lab machines
You can try running your code on the machines in rooms 113/115/116. The compiler installed on these

machines is GCC (the same one that ZyBooks uses), so there may be some minor adjustments you need

to make if your code was originally written with another compiler. If your code builds/runs on these

machines, there will be no issues when your project is graded. Alternatively, if you have the Windows

Subsystem for Linux (WSL) installed, you can use that as well, running and installing g++ from there. Or,

you can install MinGW, which is a distribution of GCC for Windows.

Submissions
Create a .zip file with ONLY the following:

1. Any source and header files you used to create the project, in a folder called “src” (see example

image in the Pre-Submission Testing section). Delete any .obj or .o files prior to submitting.

2. A Makefile from which your code can be built into an executable.

Name the .zip file lastname.firstname.project2.zip and submit on Canvas, under Project 2.

Tips
 Start small! Don’t write the entire project at once; write it one piece at a time.

 An image is just data! When writing code, treat it as such. Don’t forget anything you’ve

previously learned just because you’re dealing with images.

 You may find it helpful to implement command-line arguments to help with testing. You might

execute your program with just “program” in the CLI, but “program test” could be the command

to run your test code instead.

 Run tests early and often! You might inadvertently break something, a fast way to test will help

you find this out sooner rather than later.

 You are doing a lot of the same operations in this project (and with many projects in the future).

Think of how you might avoid having to repeat yourself. Write functions for anything you find

yourself doing 2 or more times.

 Along those same lines, think of what classes or objects might be useful to you in this project.

It’s been said often before, but the choices you make early in a project can make your life a lot

later on down the line. (Or have just the opposite effect.)

 Don’t hesitate to ask your rubber ducks for help.

 Start early! If you wait until the last minute for this project, something WILL go wrong, either

with your code, or on the testing environment. Use your lab time to test your code!

Optimization Tip
If you are dealing with large amounts of data, you SHOULD NOT pass objects “by value” to any functions

you are writing. Pass by reference or by pointer to speed things up. Alternatively, you could simply not

write any functions, and then not have to pass any data—after all, you can’t have a slow function if you

don’t have any functions! (This approach is not recommended in the slightest.)

Depending on how you write your code (and your computer specs), this entire process could be done in

5 seconds, or take 5 minutes. Think about how you are storing, accessing, and manipulating your data.

You can use the “Simple Timer” that has been shown before, to try timing your code if you are looking

to make improvements.

Grade Rubric
Tasks

All tasks must create a file with appropriate name in an output folder relative to the
program’s directory

Your program should execute all 10 tasks AUTOMATICALLY – no user input required!
Task Filename / Description Points

Task 1 part1.tga 9

Task 2 part2.tga 9

Task 3 part3.tga 9

Task 4 part4.tga 9

Task 5 part5.tga 9

Task 6 part6.tga 9

Task 7 part7.tga 9

Task 8 part8_r.tga, part8_g.tga, and part8_b.tga 9

Task 9 part9.tga 9

Task 10 part10.tga 9

Makefile created Makefile created that allows your project to be built from nothing
but the source code and the command “make” from a command-
line interface – Your code must be in a “src” folder, as described
earlier in this document
 (Or nmake with Visual Studio, mingw32-make if you downloaded
MinGW, etc—a basic makefile will work with all of those)

C++ version number: For compatibility purposes, be sure to
specify std=c++11 in your makefile

10

 Total 100

Point deductions
A 10 point penalty will be assigned for any submission which does not follow the specifications.

Essentially, anything that requires manually adjusting your submission in order to get it to work. This

means:

 Submission should contain only a src folder with your code files and a makefile, in a zip folder.

No Visual Studio solutions or project files, no copies of the images—src folder, and a makefile

 The makefile should build code from the correct location, and use the appropriate c++ 11

standard

 Files should be read from, and written to, relative paths, and with the correct slashes (forward,

in this course)

 Filenames should be exact—part5.tga is NOT the same as part_5.tga, part 5.tga, or PaRt5.tGA

 Your executable should be named project2.out

 Your program should execute automatically – no user input, execute everything every time

 Your program should complete all of its tasks in under 2 minutes (a generous amount of time)

