
1 | P a g e  
 

Comp7013  Project OO Programming      
Completion Date: 27th August                                    100 % of module repeat marks. 
You can arrange a demo First week in September. 

Vaccination Application 

Your local Vaccination center want to manage the vaccination of their Clients. The 
centre requires a solution which manages and stores personal information about 
new clients, which stores information about the particular vaccine that a client has 
received, and is easy to use. You will need to design a graphical user interface (GUI) 
which allows the vaccine centre to manage this information in a logical and intuitive 
way.  

Your task is to write an application to manage Clients and Vaccines. Each class 
written should have appropriate getters and setters for each field and a toString and 
a .equals method. 

Java Classes Required 

1. A Name class. This stores details of a person’s name  
String firstname 
String lastName 
 

2. A Client class. This is a super class for all people in the Application. Its attributes 
are:                                                

Name name 
String id 
String phone 
Vaccination vac 
Note that the Name class is utilised for the name attribute here.   

3. A ClientCollection class.  This holds an ArrayList of Client objects. 

List of Clients 
 
Operations:  
Add Client 
Remove Client 
Show all clientlist 
Find and display a particular client 

4. A Vaccination class. Used for single dose vaccinations. 

 This is a superclass with the following attributes and methods: 

              Attributes :  
String name 

        Int efficacy //range between 1% and 100% 
        Date startDoseDate 



2 | P a g e  
 

                Methods  
                         Getters and setters for each attribute  

An abstract method called deliveryInfo. 

 
5. A SecondVaccineNeeded class. Used for two dose vaccines. 

This class is a subclass of Vaccination. It has additional attribute:  
      nextVacinationDate 
It has an implementation of the abstract method delivery. It has extra get/set as 
required. 

Note :make up the detail in delivery something unique.(e.g. give 5ml or 10ml etc.) 

Design 

Firstly, create a UML diagram which details all the java classes used in your 
application and the relationships between them. Include this in your project 
submission.   

 

Part A 

We want to use the above classes in an application that has JavaFX GUI as the 
front-end (use java not scene-builder). A file that stores serializable objects should 
act as the persistent storage. You can adjust the classes above if needed with new 
attributes or even new classes if necessary. 

Your application should be able to: 

1. Create a new Client.  
2. Remove a Client. 
3. Search for a Client by supplying the Client ID.  

      4.   Display all Clients ordered by Vaccine type. i.e. vaccine name followed by 
Clients.. 
      5.   Display all Clients by ID. 

6.   List all Clients that are due a second dose and the date of that Dose. 

 
      7.   Save entire practice to a file (via serialization). Load can be done 
automatically on startup. 
      8.   Quit. 
        
Part B. 
    Build the same application except this time use a database as the persistant 
storage. 
 
 



3 | P a g e  
 

Note: 

 
1. The Database can have as many tables as is needed. 
2. Use objects for this application (Not just strings). The methods of the class 

that connects to the database should take objects as parameters where 
appropriate. 

3. Use the MVC pattern for this application and use a package structure to 
reflect the MVC pattern. 

4. Add an extra button which creates a loop that creates dummy Client objects 
and adds them to some collection until the application runs out of memory. 
Note how long it took and the memory at the point of exception. Set the vm 
size to half of normal then use the same button and observe what 
happens/how long it takes to get the out of memory exception. You can use a 
package like visual vm and show screen shots if you like. 

5. Write Junit testcases (at least 2) and a test-suite to test some elements of 
your code in your project. 

6. Use Javadoc for documentation purposes (well document at least one class). 
7. You can use jdbc for the database, but I would be highly impressed if you 

choose to use JPA for the persistence. 

 

 
 

Rough marking guide lines: 

GUI  20% 

Classes and UML diagram (basic) 15% 

MVC  

           Controller    10% 

           DBconnect   20% 

           Load save serialization 10% 

Package structure 5% 

Javadoc 5% 

Junit 5% 

Vm 5% 

Discretionary 5% 

 


	Completion Date: 27th August                                    100 % of module repeat marks.
	Vaccination Application
	Java Classes Required
	Design

