, , , , ,

[SOLVED] RESE1170 Business Research Methods Python

$50

File Name: RESE1170_Business_Research_Methods_Python.zip
File Size: 386.22 KB

5/5 - (1 vote)

Business Research Methods

RESE1170

Module Handbook

2024

1.   Welcome message from your Module Leader

Welcome to Business Research Methods (RESE-1170) at the University of Greenwich Faculty of Business.

This module will provide you with a foundation in the philosophy and practice of business & management research methods. The skills you learn in this module will prepare you for your Dissertation (BUSI-0011) or Consultancy project next year, and beyond into employment where business and management decisions should be based on rigorous evidence.

This module will achieve this aim by first seeking to develop your understanding of the philosophy of research methods. This foundation will be used to inform your understanding of the research-production process: formulating researchable questions, choosing appropriate data collection methods, sample selection, conducing textual and statistical analysis, and presenting the results professionally.

This is a rigorous, conceptually-informed module which is designed to provide you with the knowledge of the theory and practice of business research methods. This knowledge will be developed through three learning activities.

(1)     Core reading. Each week you will be expected to complete a small amount of reading  prior to participation in the workshops. This is often a single journal paper of a book chapter. However, additional readings will be available each week should you wish to further expand your knowledge in specific aspects of research methods theory and practice.

(2)     Lectures. Each week there will be a lecture on a specific topic related to business research methods. The lectures will draw on course readings, and illustrate academic concepts with real-life examples – often drawing on the research of academics within the department.

(3)    Workshop. This is a weekly 2-hour session which incorporates interactive activities, class-discussion, and debate. These sessions require preparation prior to the workshop.  Please do ensure that you do this to get the maximum out of these sessions.

The module has two assessments. These are:

(1)     Qualitative data analysis report (1,500 words, 50% of the module).

(2)     Quantitative data analysis report (1,500 words, 50% of the module).

This handbook provides essential information about this module including the aims and learning outcomes, the schedule of teaching and learning activities, assessment tasks, resource recommendations and, if applicable, any additional resources that you will need. Please read it at the start of term so you are aware of key details and important dates.

3. Enquiry-Based Learning and Research-Led Teaching

Enquiry-Based Learning (EBL)

Defined as ‘an approach based on self-directed enquiry or investigation in which the student

is actively engaged in the process of enquiry facilitated by a teacher. EBL uses real life

scenarios (for example, from case studies, company visits, and project work) and students investigate topics of relevance that foster the skills of experimental design, data collection, critical analysis and problem-solving’ . This module requires students to use the skills

developed in this module to design research questions, collect and analyze qualitative and quantitative data to make evidence-based recommendations.

Research-Led Teaching (RLT)

An element of Enquiry Based Learning links to RLT, which involves faculty introducing

students to their own research where it is relevant to the curriculum being taught as well as drawing on their own knowledge of research developments in the field, introducing them to the work of other researchers. RLT sees students as active participants in the research

process, not just as an audience. This is achieved by discussing such developments in

lectures and classes, and setting reading lists including recent research publications at the frontier of the field. The definition of a diverse assessment regime at the programme level   (incorporating an expectation of familiarity with, and use of, such

publications in assignments) and the inclusion of projects at every level of the programme is also fundamental to achieving these objectives. This is achieved through developments in

lectures and classes, and setting reading lists including recent research publications at the frontier of the field. The definition of a diverse assessment regime at the programme level  (incorporating an expectation of familiarity with, and use of, such

publications in assignments) and the inclusion of projects at every level of the programme is also fundamental to achieving these objectives. This module is driven by research design

and analysis, and the research experience and skills of the teaching team will be utilised to demonstrate and illustrate best research practice to students.

4. Module details and learning outcomes

Host faculty: Business

Host school: BOS

Number of credits: 15

Term(s) of delivery: Term 2

Site(s) of delivery: Greenwich

Aims:

This module aims to provide students with a solid understanding of the philosophy and practice of business and management research methods. The skills students learn in this course will prepare them for their dissertation, and beyond into employment.

This module will achieve this aim by first seeking to develop students’ appreciation of the philosophy of research methods. This foundation will be used to inform students’ understanding of the research-production process: formulating researchable questions, choosing appropriate data collection methods, sample selection, conducting statistical and textual analysis.

Learning Outcomes*:

On successful completion of this module, students will be able to:

1.   Distinguish between the two principle research methodological paradigms (i.e.

qualitative and quantitative research methods), and understand their underpinning philosophical assumptions, strengths, and weaknesses.

2.   Describe the strengths and limitations of qualitative and quantitative research methods.

3.   Design research instruments (i.e. survey and interview schedule).

4.   Conduct basic quantitative and qualitative analyses.

5.   Generate evidence-based conclusions, decisions and recommendations.

* A learning outcome is a subject-specific statement that defines the learning to be achieved through completing this module.

Glossary:

•     A pre-requisite module is one that must have been completed successfully before taking this module.

•     A co-requisite module is one that must be taken alongside this module.

•     A learning outcome is a subject-specific statement that defines the learning to be achieved through completing this module.

5. Employability

Upon successful completion of this module, students will gain several employable skills. The clearest of these is cognitive skills. This module will expose you to different sorts of problems, make reasoned and well-justified judgements on how to approach the problem, pay careful attention to detail, and make evidence-based conclusions.

Along with cognitive abilities, this module develops students’ technical ability around research design within business and management. This includes research design which may be used by both companies and consultancy firms to examine business challenges, design research to collect and analyse data, and to use this analysis to create evidence-based recommendations.

You can find out more about the Greenwich Employability Passport at: Greenwich Employability Passport for students.

Information about the Career Centre is available at:Employability and Careers | University of Greenwich.

You can also use LinkedIn Learning to gain access to thousands of expert-led courses to

support your ongoing personal development. More information can be found at:LinkedIn learning | IT and library services

8. Assessments

Assessment 1: Qualitative data analysis

This assignment is worth 50% of the overall module grade, and has a limit of 1,500 words.

Your task is to write a short research design and data analysis for a qualitative project. This assessment mirrors the type of information that is presented in the ‘methods’ section of academic journal papers, government reports, management & business consultancy reports, and other documents which are based on research.

The qualitative research that you will write about is on the topic: “students’ experiences of negotiating term-time work and study” .

You will write the research design (mirroring a methodology chapter), and present findings and conclusions in answering a research question of your choice.

The assessment mirrors the learning outcomes of this module. In this assessment, you will:

1.   Describe the qualitative methodological paradigm, and its underpinning philosophical assumptions, its strengths and limitations.

2.   Describe the methods of data collection and analysis.

3.   Design research instruments (i.e. interview schedule).

4.   Conduct basic qualitative analyses.

5.   Generate evidence-based conclusions, decisions and recommendations.

In order to achieve this, consider following this template provided in Moodle.

At the start of the module, this may seem like a lot of work, but it is really achievable so long as you come to the tutorials. Each week we will have a 2-hour workshop together, and in this workshop we will be going through each step of the research process together.

For example, in one week we will use the workshop to design an series of interview questions (called a ‘schedule’). In another week you will use this schedule to interview a classmate. In another week we will analyse that interview, and so on.

In other words, so long as you come to the workshop, you will be working towards your assessment with your tutor, in class time.

Your work should be supported by at least 5 academic references, which can include the core textbook.

Formative task 1: Qualitative data analysis

Between weeks 4-6 you will design an interview schedule, use that schedule to interview a classmate, transcribe and code the interview. It is important that you complete these tasks  (see Moodle for each of these tasks in their respective weeks). In week 6 you will be invited to a feedback workshop with you tutor. You should come prepared with your interview material (the schedule and a coded transcript) as well a 1 page outline of your key points of your assessment.

Marking criteria

% of

assessment

Methodological rigor –

The description of the methodology, method of data collection, and method of data analysis are clearly outlined and justified. Strengths and weaknesses of the method are considered.

35%

Data analysis

The submission shows evidence of a thematic / statistical analysis of the dataset. Clear and professionally presented evidence is given to support key findings.

35%

Academic literature

This work draws on references to the academic literature to support claims, and outline the strengths and limits of the methods. The submission should include references to at least 5 academic articles or methods-based texts. The work is thoroughly and properly referenced, using the Harvard Style.

15%

Academic expression

The submission is well structured, presents the work in a logical and coherent manner. The standard of English expression should be strong; with correct grammar, spelling, and punctuation.

15%

Assessment 2: Quantitative Data Analysis

This assignment is worth 50% of the overall module grade, and has a limit of 1,500 words.

Your task is to write a short research design and data analysis for a quantitative project.

This assessment mirrors the type of information that is presented in the ‘methods’ section of academic journal papers, government reports, management & business consultancy reports, and other documents which are based on research. This assessment also mirrors that which you did for qualitative work, except this time there are statistics! There is a template on Moodle for you to use to help you structure this work.

The quantitative research that you will write about is on the topic of working from home at a fictional company, Lomond Insurance. Details of the case, and the Excel dataset, are provided on Moodle under the “assessment” tab.

The assessment is designed to meet the learning outcomes. Your assessment should include the following four components:

1.   Describes the quantitative methodological paradigm, and its underpinning philosophical assumptions, strengths, and limitations.

2.   Describe the research sample.

3.   Conduct a statistical analysis.

4.   Generate evidence-based conclusions and recommendations.

The quantitative analysis that you will complete will comprise of the following statistical tests: Descriptive statistics, Students’ T-test, and a Pearson’s Correlation Coefficient

In order to meet these assessment components, you will be guided, week-by-week in each the workshops, through each of the analysis stages.

Workshop 1 & 2 outline the philosophy of research, and the principals of

quantitative research. By participating in these workshops you will be able to complete component 1 of the assessment.

Workshop 3 outlines research design, focusing on research samples. By

participating in this workshop, you will be able to describe component 2 of the assessment.

Workshops 8 – 11 are held in the IT labs. These workshops will guide you, week- by-week through the statistical analysis that you will need to complete the assessment. Within the workshop you will practice the principals of the statistical tests in a smaller dataset. You will then have the opportunity to work on the assessment, in class, under the supervision of your tutor. This will help you complete component 3 of the assessment.

Workshop 12 outlines how to present statistical evidence, and draw evidence- based conclusions. This workshop will allow you to complete component 4.

Some helpful pointers:

•    This assessment is a mini research project. It is going to be difficult to complete this in a single day. Do not leave this assessment to the last day before starting to work  on it.

•    After each workshop you will be given clear instructions on what you can do to help boost your grades. You may be given specific tasks to complete or chapters to read. Please ensure that you do this to maximise your grades.

•    You should least 2 academic references to support your assessment submission, which can include the core textbook. Do not reference random websites. Use quality references.

•    There is a template on Moodle which provides an outline of how your assessment should be structured. Please consider using this template to help structure your writing so that you are including all the 4 components requires for this submission.

Formative assessment

Between weeks 8-11 the workshops will be held in an IT lab where you will have the opportunity to work on your assessment under the supervision of your tutor. Please ensure that you come to the workshop to make sure that you are making progress on your assessment. Take onboard any guidance and advice provided by your tutor. In week 12 you will be invited to a feedback workshop with you tutor.

Marking criteria

% of

assessment

Methodological rigour –

The description of the methodology, method of data collection, and method of data analysis are clearly outlined and justified. Strengths and weaknesses of the method are considered.

35%

Data analysis

The submission shows evidence of a thematic / statistical analysis of the dataset. Clear and professionally presented evidence is given to support key findings.

35%

Academic literature

This work draws on references to the academic literature to support claims, and outline the strengths and limits of the methods. The

submission should include references to at least 5 academic articles

or methods-based texts. The work is thoroughly and properly referenced, using the Harvard Style.

15%

Academic expression

The submission is well structured, presents the work in a logical and coherent manner. The standard of English expression should be

strong; with correct grammar, spelling, and punctuation.

15%

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
[SOLVED] RESE1170 Business Research Methods Python
$50