[SOLVED] Matlab-: Audio Scene Classification

$25

File Name: Matlab-:_Audio_Scene_Classification.zip
File Size: 329.7 KB

5/5 - (1 vote)

Background. (Please include a general scene-setting overview of the project targeted at the non- specialist)
During recent years, there has been a huge increase of the amount of various types of multimedia data (audio, speech, music, and video) available in digital format. This has created a large demand for development of automatic intelligent tools that could organise and search through this data, or extract knowledge from this data.

This project is concerned with recognition of acoustic scenes, i.e., to classify a given audio recording into one of the classes characterising the environment in which it was recorded, e.g., park, street, office. The aim is to design and develop an acoustic scene recognition system, exploring different type of feature representation and acoustic modelling. The system should be developed using Python / Matlab and would also involve the use of the HTK toolkit.

Expected Outcomes. (Please include a specification for the expected outcomes of this project when undertaken by an average student. e.g. The aim of this project is to design and .)

  • Represent the audio signal as a sequence of features, e.g., MFCC.
  • (I) Develop and evaluate a conventional acoustic scene classification system based on using the Gaussian Mixture Model (GMM) perform the training of the model for each

    scene with corresponding data.

  • (II) Develop and evaluate a GMM-UBM system build a general GMM based on data

    from all scenes and then employ maximum a-posteriori adaptation (MAP) adaptation

    using scene-specific data to obtain the model of each scene.

  • (III) Develop and evaluate a GMM-SVM system this is based on representing an

    utterance of recording as a supervector consisting of the means of the adapted GMM

    components and then using support vector machine (SVM) for classification.

  • (IV) Develop and evaluate an i-vector-based system this is based on using the

    supervector representation but then transforming this to an i-vector with reduced

    dimensionality for classification.

  • To design and perform experimental evaluations using leave-one-out procedure on a

    given corpus of audio recordings.

Fallback and Rebuild Position. (Students sometimes have difficulty in delivering the stated outcomes. Using bullet points, please list a suitable set of minimal target objectives.)

  • Develop and evaluate the system denoted as (I) and (II) above.
  • Basic analysis of the results and discussion.

Enhancement Position. (It is anticipated that many students will achieve the expected outcomes stated above. Using bullet points, please list a suitable set of achievable enhancement objectives.)

  • In addition to the Fallback Position, develop and evaluate the system denoted as (III) and (IV) above.
  • Perform a comprehensive literature review of recent research in the project area.
  • Thorough analysis of the results, discussion and consequent improvements to the

    system.

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
[SOLVED] Matlab-: Audio Scene Classification
$25