, , , , ,

[SOLVED] EG501V Computational Fluid Dynamics 2016-17 SQL

$25

File Name: EG501V_Computational_Fluid_Dynamics_2016_17_SQL.zip
File Size: 442.74 KB

5/5 - (1 vote)

EG501V Computational Fluid Dynamics

SESSION 2016-17

00 December 2016

Problem 1 (a: 2 marks; b: 15 marks; c: 8 marks; total 25 marks)

We use dimensionless quantities throughout this problem.

Figure. Left: flow geometry and streamlines; right: discretization and numbering of unknowns.

Consider the two-dimensional flow in a sharp 90o bend as sketched in the left panel of the figure. This flow can be described by means of a stream function φ(x, y) that obeys the following PDE: The right panel of the figure defines the flow geometry and boundary conditions: = 0 at the inlet (bottom); = 0  at the outlet

(right) ; φ = 0  on the right and lower wall; φ = 1 on the left and upper wall. The figure also defines the discretization, with spacing Δ = 1 . We realize that the problem is symmetric with respect to the dashed line in the left panel. This implies that we only need to solve φ in the numbered points in the right panel of the figure.

a.   What type of PDE (parabolic, elliptic, hyperbolic) are we dealing with?

b.   From a discretization of the PDE, and from the boundary conditions determine the 9×9

matrix [A] and the 9-dimensional vector b such that the 9-dimensional vector φ

containing φk , k = 1…9 satisfies [A]φ = b . Number the unknowns φk as indicated in the figure.

c.   The fluid velocity in x andy-direction ( ux and uy ) is related to the stream function φ

according to ux = and uy = − .   The solution to [ A b ]φ = b is φ
= [0.6266, 0.4347, 0.3737, 0.3594, 0.9093, 0.8186, 0.7385, 0.7006, 0.6901]. Given this solution, determine ux and uy in points 1, 3, 4, and 5 based on central differences approximations.

Problem 2 (a: 7 marks; b: 9 marks; c: 9 marks; total: 25 marks)


Figure. Catalytic layer & discretization

In steady state, the concentration c of a chemical species that is being consumed in a layer (thickness d) of solid catalytic material can be described by the following reaction-diffusion

equation: with Γ the diffusion coefficient, and k the reaction rate constant. At the

left side of the layer (at x=0) the concentration c is maintained at c0, at the right side (at x=d) at c=0. In dimensionless form the parameters of this problem are: d=4,  Γ = 1 , k=1, and c0  = 1 .

In order to solve for c as a function of x, c is discretized to ci , i = 1…3 , with a constant spacing Δx = 1 between the points, see the figure.

a.   First discretize the differential equation: write it as a linear algebraic equation in terms of

ci . Then set up a linear system of equations in matrix-vector form  [A] c(→) = b(→) with  c(→) the

vector containing the three unknown concentrations ci , [A]a 3×3 matrix, and b a three-

dimensional vector. Determine [A] and b .

The rest of this question is about solving  [A] c(→) = b . If you do not have an answer under Question a., assume and (these [A] and b are not the correct answer for a.).

b.   Solve the system  [A] c(→) = b by means of Gaussian elimination; show all the steps that lead to your solution.

c.   Perform. two (2) Gauss-Seidel iterations on the system [A] c = b. Take as the

starting vector of the iteration process.

Problem 3 (a: 5 marks; b: 5 marks; c: 15 marks; total: 25 marks)

We are dealing with a turbulent flow in which the chemical reaction A + B P takes place. The reaction is of second order which means that the number of moles of product P being produced    per unit volume and per unit time (symbol rP, unit [mol/(m3.s)]) is rP = kPcAcB with cA and cB the concentration [mol/m3] of species A and B respectively, and kP the reaction rate constant

[m3/(mol.s)]. We assume all species have the same diffusion coefficient  Γ  [m2/s].

a.   For a non-reacting system, the transport equations for chemical species A and B read

respectively. Argue that for the reacting system these equations become and

b.   What is the transport equation for the concentration cP [mol/m3] of chemical species P?

c.   Derive through a Reynolds decomposition of the equation

an equation for the time-average concentration c .

Assume a two dimensional situation. Identify the terms in the equation that need closure.

Problem 4 (25 marks)

We use dimensionless quantities throughout this problem.

The discrete version of the pressure-correction equation reads:

Given the 3×3 mesh of control volumes as in the figure, given the boundary conditions for

pressure correction π which is  ∂πn = 0 on all four boundaries, and the preliminary velocity

values ux(*)  and uy(*)  as given in the figure, determine the matrix-vector system  [A = b(→) that

needs to be solved in order to  in the same order as the pressure points numbered in the figure).

Further given: hx = 1, hy = 0.5, ρ t = 1 .

Figure. Staggered mesh. Pressure defined in the centre of each control volume (dots); velocity at the vertices of each control volume (arrows). All values given are velocity values.

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
[SOLVED] EG501V Computational Fluid Dynamics 2016-17 SQL[SOLVED] EG501V Computational Fluid Dynamics 2016-17 SQL
$25