[Solved] CSDS455 Homework 18-Chordal graph

$25

File Name: CSDS455_Homework_18-Chordal_graph.zip
File Size: 310.86 KB

SKU: [Solved] CSDS455 Homework 18-Chordal graph Category: Tag:
5/5 - (1 vote)

Next week we will be discussing minors. Please skim through your texts sections on minors and topological minors.

Problem 1: Let G be a chordal graph. Let G0 be the graph created by taking G and performing a sequence of edge contractions. Prove that G0 is also chordal.

Problem 2: Let G be a planar graph. Prove that any minor of a planar graph must also be planar. (Dont use Kuratowskis Theorem.)

Problem 3: Prove that if any graph G with (G) k contains a Kk minor, then any graph G0 with (G0) k 1 must contain a Kk1 minor.

Problem 4: Use induction on the number of vertices of G to prove that if G does not contain a K4 minor then G is 3-colorable.

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
[Solved] CSDS455 Homework 18-Chordal graph
$25