[Solved] CS7643 Homework 1

$25

File Name: CS7643_Homework_1.zip
File Size: 160.14 KB

SKU: [Solved] CS7643 Homework 1 Category: Tag:
5/5 - (1 vote)

1 Multiple Choice Questions

  1. true/false We are machine learners with a slight gambling problem (very different from gamblers with a machine learning problem!). Our friend, Bob, is proposing the following payout on the roll of a dice:

payout (1)

where x {1,2,3,4,5,6} is the outcome of the roll, (+) means payout to us and () means payout to Bob. Is this a good bet i.e are we expected to make money?

True False

  1. (1 point) X is a continuous random variable with the probability density function:

(2)

Which of the following statements are true about equation for the corresponding cumulative density function (cdf) C(x)?

[Hint: Recall that CDF is defined as C(x) = Pr(X x).]

All of the above

None of the above

  1. (2 point) A random variable x in standard normal distribution has following probability density

(3)

Evaluate following integral

(4)

[Hint: We are not sadistic (okay, were a little sadistic, but not for this question). This is not a calculus question.]

a + b + c c a + c b + c

  1. (2 points) Consider the following function of x = (x1,x2,x3,x4,x5,x6):

(5)

where is the sigmoid function

(6)

Compute the gradient xf() and evaluate it at at x = (5,1,6,12,7,5).

  1. (2 points) Which of the following functions are convex?

x for x Rn for w Rd

All of the above

  1. (2 points) Suppose you want to predict an unknown value Y R, but you are only given a sequence of noisy observations x1xn of Y with i.i.d. noise ().. If we assume the noise is I.I.D. Gaussian (), the maximum likelihood estimate (y) for Y can be given by:

= argmin

= argmin

Both A & C

Both B & C

2 Proofs

  1. Prove that

loge x x 1, x > 0 (7)

with equality if and only if x = 1.

[Hint: Consider differentiation of log(x) (x 1) and think about concavity/convexity and second derivatives.]

  1. (6 points) Consider two discrete probability distributions p and q over k outcomes:

k k X X

pi = qi = 1 (8a)

i=1 i=1

pi > 0,qi > 0, i {1,,k} (8b)

The Kullback-Leibler (KL) divergence (also known as the relative entropy) between these distributions is given by:

(9) It is common to refer to KL(p,q) as a measure of distance (even though it is not a proper metric). Many algorithms in machine learning are based on minimizing KL divergence between two probability distributions. In this question, we will show why this might be a sensible thing to do.

[Hint: This question doesnt require you to know anything more than the definition of KL(p,q) and the identity in Q7]

  • Using the results from Q7, show that KL(p,q) is always non-negative.
  • When is KL(p,q) = 0?
  • Provide a counterexample to show that the KL divergence is not a symmetric function of its arguments: KL(p,q) 6= KL(q,p)
  1. (6 points) In this question, you will prove that cross-entropy loss for a softmax classifier is convex in the model parameters, thus gradient descent is guaranteed to find the optimal parameters. Formally, consider a single training example (x,y). Simplifying the notation slightly from the implementation writeup, let

z = Wx + b, (10)

(11)

(12)

Prove that L() is convex in W.

[Hint: One way of solving this problem is brute force with first principles and Hessians.

There are more elegant solutions.]

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
[Solved] CS7643 Homework 1
$25