[SOLVED] CS 369 2014 Assignment 3

$25

File Name: CS_369_2014_Assignment_3.zip
File Size: 226.08 KB

5/5 - (1 vote)

CS 369 2014 Assignment 3

Due Friday May 29 8:30 pm

This assignment has two parts. In the first part, we use a Hidden Markov Model to model secondary structure in protein sequences and implement a couple of algorithms we saw in lectures.

In the second part, we simulate sequences down a tree according to the Jukes-Cantor model then use distance methods to try to reconstruct the tree.

You choice of language is restricted to Java, Python (with NumPy) or R. Remember to use a reasonable random number generator (try the Mersenne twister implemented in cern.jet.randomengine in the Colt library if using Java). The default generator in Java is not acceptable.

You need to test your code thoroughly and write clear, commented code that others can understand.

Name any submitted scripts like Q1a.java and provide a written report in which your results are collected and explained. Make sure your reported results are written in good English (dont just dump code or numbers into your report). Submit your code and a pdf of your report to https://adb.auckland.ac.nz/ by 8:30 pm on the due date.

There are 30 marks in total for this assessment.

1. [14 marks total] Suppose we wish to estimate basic secondary structure in protein (amino acid) sequences. The model we consider is a simplistic rendition of the model discussed in S C. Schmidler et al. (2004) Bayesian Segmentation of Protein Secondary Structure, doi:10.1089/10665270050081496

We assume that at each point of the sequence, the residue is associated with one of three secondary structures: -helix, -strand and loops which we label H, E and T, respectively. To simplify the problem, we classify the amino acids as either hydrophobic, hydrophilic or neutral (B, I or N, respectively) so a sequence can be represented by this 3-letter alphabet.

In a -helix, the residues are 20% neutral, 30% hydrophobic and 50% hydrophilic. In a -strand, they are 30%, 55%, 15% and in a loop they are 50%, 10%, 40%.

Assume that all secondary structures have geometrically distributed length with -helices having mean 16 residues, -strands having a mean of 6 residues and loops a mean of 4 residues. A -strand is followed by an -helix 40% of the time and a loop 60% of the time. An -helix is followed by a -strand 30% of the time and a loop 70% of the time and a loop is equally likely to be followed by a strand or a helix. At the start of a sequence, any structure is equally likely.

(a) [3 marks] Sketch a diagram of the HMM. In your diagram, show only state nodes and transitions. Show the emission probabilities using a separate table. Derive the transition probabilities of a state to itself (e.g., aH H ) by considering that if L is geomPetrically distributed with parameter p then E[L] = 1/p. Also remember that l akl = 1 for any state k.

1

  1. (b) [3 marks] Write a method to simulate state and symbol sequences of arbi- trary length from the HMM. Your method should take sequence length as an argument. Simulate and print out a state and symbol sequence of length 200.
  2. (c) [3 mark] Write a method to calculate the logarithm (base 2) of the joint probability P (x, ). Your method should take x and as arguments.
    Use your method to calculate P(x,) for and x given below and for the sequences you simulated in Q1b.

    = H,H,H,H,H,T,T,E,E,E,H,H,H,H,H,H,E,E,E,E,E,E

    x = N,I,N,B,N,I,I,B,N,I,B,B,I,N,B,I,I,N,B,B,N,B

  3. (d) [4 marks] Implement the forward algorithm for HMMs to calculate the (log- arithm base 2) of the probability P(x). Your method should take x as an argument.
    Use your method to calculate log(P(x)) for and x given above and for the sequences you simulated in Q1b.

    How does P(x) compare to P(x,) for the examples you calculated? Does this relationship hold in general? Explain your answer.

  4. (e) [1 mark] The method discussed in class for sampling state sequences (Section 18.8 of notes) relies on having the forward matrix, f. In all our calculations, we use the log of the forward matrix, F . Assuming the end of the sequence is not modelled, so fk0 = 1 for all k, describe how the first step of the stochastic traceback can be performed directly from the log matrix, F, without having to form f.

2. [16 marks total] In this question you will write a method that simulates random trees, extend the sequence simulator you wrote in Assignment 2 to work with these trees, calculate a distance matrix from the simulated sequences and then, using existing code, reconstruct the tree from this distance matrix.

(a) [5 marks] Write a method that simulates trees according to the Yule model (described below) with takes as input the number of leaves, n, and the branch- ing parameter, . It is recommended that you use Java for this problem and use the supplied Tree class on the resources page.

The Yule model is a branching process that suggests a method of constructing trees with n leaves. From each leaf, start a lineage going back in time. Each lineage coalesces with others at rate . When there k lineages, the total rate of coalescence in the tree is k . Thus, we can generate a Yule tree with n leaves as follows:

Set k = n, t = 0.
Make n leaf nodes with time t and labeled from 1 to n. This is the set of

available nodes. While k > 1, iterate:

Generateatimetk Exp(k ). Sett=t+tk. 2

Make a new node, m, with height t and choose two nodes, i and j, uniformly at random from the set of available nodes. Make i and j the child nodes of m.

Add m to the set of available nodes and remove i and j from this set.

Set k = k-1.

Simulate 1000 trees with = 1 and n = 10 and check that the mean height of the trees (that is, the time of the root node) agrees with the theoretical mean of 1.93.
The Tree class has a getNewick method that returns a Newick string rep- resentation of the tree. Use this string to view your tree using IcyTree at http://tgvaughan.github.io/icytree/icytree.html. Include a picture of a simulated tree with 10 leaves and = 1 in your report.

(b) [5 marks] Write a method to simulate sequences down a simulated tree ac- cording to the Jukes-Cantor model (as described in Assignment 2). Your method should take a tree with n leaves, sequence length L, and a mutation rate . It should return either a matrix of sequences corresponding to nodes in the tree or the tree with sequences stored at the nodes.

Your method should generate a uniform random sequence of length L at the root node and recursively mutate it down the branches of the tree, using the node heights to calculate branch length.
In your report, include a simulated tree with n = 10 and = 1 and a set of sequences of length L = 20 and mutation parameter = 0.5 simulated on that tree.

(c) [3 marks] Write a method to calculate the Jukes-Cantor distance matrix, d, from a set of sequences, where dij is the distance between the ith and the jth sequences. Recall that the Jukes-Cantor distance for sequences x and y is defined by

dxy = 3log(1 4fxy) 43

where fxy is the fraction of diering sites between x and y. Since we will be dealing with short sequences, use the following definition of fxy so that the distances are well-defined:

fxy =minDxy,0.75 1 LL

where Dxy is the number of dierent sites between x and y and L is the length of x.
Also write a method to write matrix d to a comma separated text file of given name where the first entry in each row is the label of the associated leaf. For example, the resulting file from a 3 leaf tree might look like:

1,0.000,0.136,0.215

3

 2,0.136,0.000,0.212 3,0.215,0.212,0.000

Include a simulated set of sequences of length L = 20 from the tree leaves and corresponding distance matrix in your report for a tree with n = 10, = 1 and mutation parameter = 0.5.

(d) [3 marks] Now simulate a tree with n = 10 and = 1 and on that tree, simulate three sets of sequences with lengths L = 20, L = 50 and L = 200, respectively, with fixed = 0.2. For each simulated set of sequences, calculate the distance matrix, and save it to file called distL20.csv, distL50.csv or distL200.csv, as appropriate.

In R, reconstruct the tree using the UPGMA algorithm as implemented in the doUPGMA.R script on the course Resources page. This script reads in each of the three csv distance matrix files, performs UPGMA for each matrix and saves a picture of each reconstructed tree to UPGMAtrees.pdf.

Include these reconstructed trees in your report along with your original tree. Comment on the quality of the reconstructions and the eect that increasing the sequence length has on the accuracy of the reconstruction.

4

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
[SOLVED] CS 369 2014 Assignment 3
$25