| A simple expression language with two types.
module IntBool where
import Prelude hiding (not,and,or)
Syntax of the core IntBool language
int::=(any integer)
exp::=intinteger literal
| exp + expinteger addition
| exp * expinteger multiplication
| exp = expcheck whether two expressions are equal
| exp ? exp : expconditional expressions
1. Define the abstract syntax as a Haskell data type.
data Exp
= Lit Int
| Add Exp Exp
| Mul Exp Exp
| Equ Exp Exp
| IfExp Exp Exp
deriving (Eq,Show)
Here are some example expressions:
* encode the abstract syntax tree as a Haskell value
* what should the result be?
| 2 * (3 + 4)=>14
ex1 :: Exp
ex1 = Mul (Lit 2) (Add (Lit 3) (Lit 4))
| 2 * (3 + 4) = 10=>false
ex2 :: Exp
ex2 = Equ ex1 (Lit 10)
| 2 * (3 + 4) ? 5 : 6=>type error!
ex3 :: Exp
ex3 = If ex1 (Lit 5) (Lit 6)
| 2 * (3 + 4) = 10 ? 5 : 6=>6
ex4 :: Exp
ex4 = If ex2 (Lit 5) (Lit 6)
2. Identify/define the semantic domain for this language.
* what types of values can we have?
* how can we express this in Haskell?
Types of values we can have:
* Int
* Bool
* Error
data Value
= I Int
| B Bool
| Error
deriving (Eq,Show)
Alternative semantics domain using Maybe and Either:
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b
type Value = Maybe (Either Int Bool)
Example semantic values in both representations:
I 5 <=>Just (Left 5)
B True<=>Just (Right True)
Error <=>Nothing
Isomorphic to the above:
type Value = Maybe (Either Bool Int)
type Value = Either (Maybe Int) Bool
type Value = Either Int (Maybe Bool)
type Value = Either (Either Int Bool) ()
Not isomorphic to the above
type Value = Either (Maybe Int) (Maybe Bool)
(reason: two different Nothings! Left Nothing and Right Nothing)
3. Define the semantic function.
eval :: Exp -> Value
eval (Lit i)= I i
eval (Add l r)= case (eval l, eval r) of
(I i, I j) -> I (i + j)
_-> Error
eval (Mul l r)= case (eval l, eval r) of
(I i, I j) -> I (i * j)
_-> Error
eval (Equ l r)= case (eval l, eval r) of
(I i, I j) -> B (i == j)
(B a, B b) -> B (a == b)
_-> Error
eval (If c t e) = case eval c of
B True-> eval t
B False -> eval e
_ -> Error
4. Syntactic sugar.
Goal: extend the syntax of our language with the following operations:
* boolean literals
* integer negation
* boolean negation (not)
* conjunction (and)
* disjunction (or)
How do we do this? Can we do it without changing the abstract syntax
or the semantics?
true :: Exp
true = Equ (Lit 1) (Lit 1)
false :: Exp
false = Equ (Lit 0) (Lit 1)
neg :: Exp -> Exp
neg e = Mul (Lit (-1)) e
not :: Exp -> Exp
not e = If e false true
not e = Equ false e
and :: Exp -> Exp -> Exp
and l r = If l (If r true false) false
or :: Exp -> Exp -> Exp
or l r = If l true (If r true false)
| Example program that uses our syntactic sugar.
not true || 3 = -3 && (true || false)->false
ex5 :: Exp
ex5 = or (not true) (and (Equ (Lit 3) (neg (Lit 3))) (or true false))
* Statically typed variant (later!)
1. Define the syntax of types.
2. Define the typing relation.
typeOf = undefined
3. Define the semantics of type-correct programs.
evalChecked = undefined
| Helper function to evaluate an Exp to an Int.
evalInt :: Exp -> Int
evalInt e = case evalChecked e of
Left i -> i
_ -> error internal error: expected Int, got something else!
| Helper function to evaluate an Exp to an Bool.
evalBool :: Exp -> Bool
evalBool e = case evalChecked e of
Right b -> b
_ -> error internal error: expected Bool, got something else!
4. Define our interpreter.
checkAndEval = undefined
Reviews
There are no reviews yet.