[SOLVED] CS Data Display Data

$25

File Name: CS_Data_Display_Data.zip
File Size: 188.4 KB

5/5 - (1 vote)

Data Display Data
MTB > WOPEN E:KurtDocumentsise525Blackboardmm2- 5_2018.DAT;
SUBC> FTYPE;
SUBC> TEXT;
SUBC> FIELD;
SUBC> COMMA;
SUBC> TDELIMITER;
SUBC> DOUBLEQUOTE;
SUBC> DECSEP;
SUBC> PERIOD;
SUBC> DATA;
SUBC> IGNOREBLANKROWS;
SUBC> EQUALCOLUMNS;
Row y x1 x2 x3 x4
1 240 25 24 91 100
2 236 31 21 90 95
3 290 45 24 88 110
4 274 60 25 87 88
5 301 65 25 91 94
6 316 72 26 94 99
7 300 80 25 87 97
8 296 84 25 86 96
9 267 75 24 88 110
SUBC>
SUBC>
SUBC>
SUBC>
Retrieving worksheet from file: E:KurtDocumentsise525Blackboardmm2- 5_2018.DAT
10 276 60 25 91 105
11 288 50 25 90 100
12 261 38 23 89 98
Worksheet was saved on Mon Jan 22 2018
SHEET 1;
VNAMES -1;
FIRST 1;
NROWS 12.
Results for: mm2-5_2018.DAT
MTB > print c1-c5
MTB >

Regression Analysis: y versus x1, x2, x3, x4 Analysis of Variance
MTB > print c1-c5
MTB > Regress;
SUBC> Response y;
SUBC> Nodefault;
SUBC> Continuous x1 x4;
SUBC> Terms x1 x2 x3 x4;
SUBC> Constant;
Source DF Regression 4 x1 1 x2 1 x3 1 x4 1 Error 7 Total 11
Adj SS 4957.24 653.63 687.93 87.68 0.08 1699.01 6656.25
Adj MS 1239.31 653.63 687.93 87.68 0.08 242.72
F-Value P-Value 5.11 0.030 2.69 0.145 2.83 0.136 0.36 0.567 0.00 0.986
SUBC> Unstandardized;
SUBC> Tmethod;
SUBC> Tanova;
SUBC> Tsummary;
SUBC> Tcoefficients;
SUBC> Tequation;
Model Summary
S R-sq 15.5793 74.47%
R-sq(adj) 59.89%
R-sq(pred) 7.75%
Coefficients
Term Coef Constant -103 x1 0.605 x2 8.92 x3 1.44 x4 0.014
SE Coef T-Value 208 -0.49 0.369 1.64 5.30 1.68 2.39 0.60 0.734 0.02
P-Value VIF 0.636
Regression Equation
y = -103+0.6051+8.922+1.443+0.0144
0.145 2.32 0.136 2.16 0.567 1.34 0.986 1.01
SUBC> MTB >
TDiagnostics 0.

Fits and Diagnostics for Unusual Observations
Std Obs y Fit Resid Resid
3 290.0 266.7 23.3 2.09 R R Large residual
Prediction for y Regression Equation
MTB > Predict y;
SUBC> Nodefault;
SUBC> KPredictors 75 24 90 98;
SUBC> TEquation;
SUBC> TPrediction.
MTB >
y = -103+0.6051+8.922+1.443+0.0144
Settings
Variable Setting
x1 x2 x3 x4
75 24 90 98
Prediction
Fit
287.562 10.0540
95% CI (263.788, 311.336)
95% PI (243.717, 331.406)
SE Fit

Regression Analysis: y versus x1, x2, x3 Analysis of Variance
MTB > Regress;
SUBC> Response y;
SUBC> Nodefault;
SUBC> Continuous x1 x4;
SUBC> Terms x1 x2 x3;
SUBC> Constant;
SUBC> Unstandardized;
SUBC> Tmethod;
SUBC> Tanova;
SUBC> Tsummary;
SUBC> Tcoefficients;
SUBC> Tequation;
Source DF Regression 3 x1 1 x2 1 x3 1 Error 8 Total 11
Adj SS 4957.16 654.97 688.87 88.87 1699.09 6656.25
Adj MS 1652.39 654.97 688.87 88.87 212.39
F-Value P-Value 7.78 0.009 3.08 0.117 3.24 0.109 0.42 0.536
Model Summary
S R-sq 14.5735 74.47%
R-sq(adj) 64.90%
R-sq(pred) 43.55%
Coefficients
Term Coef Constant -102 x1 0.606 x2 8.92 x3 1.44
SE Coef 186 0.345 4.95 2.23
T-Value -0.55 1.76 1.80 0.65
P-Value VIF 0.600
Regression Equation
y = -102+0.6061+8.922+1.443
0.117 2.32 0.109 2.16 0.536 1.32
SUBC> MTB >
TDiagnostics 0.

Regression Analysis: y versus x1, x2 Analysis of Variance
MTB > Regress;
SUBC> Response y;
SUBC> Nodefault;
SUBC> Continuous x1 x4;
SUBC> Terms x1 x2;
SUBC> Constant;
SUBC> Unstandardized;
SUBC> Tmethod;
SUBC> Tanova;
SUBC> Tsummary;
SUBC> Tcoefficients;
SUBC> Tequation;
Source DF Regression 2 x1 1 x2 1 Error 9 Total 11
Adj SS 4868.3 577.8 1109.4 1788.0 6656.2
Adj MS 2434.1 577.8 1109.4 198.7
F-Value P-Value 12.25 0.003 2.91 0.122 5.58 0.042
Model Summary
S R-sq 14.0948 73.14%
R-sq(adj) 67.17%
R-sq(pred) 47.33%
Coefficients
Term Constant x1
x2
Coef SE Coef 0.5 95.6 0.497 0.292 10.27 4.34
T-Value P-Value 0.01 0.996 1.71 0.122 2.36 0.042
VIF
Regression Equation
y = 0.5+0.4971+10.272
1.77 1.77
SUBC> MTB >
TDiagnostics 0.

Regression Analysis: y versus x2 Analysis of Variance
MTB > Name C6 RESI.
MTB > Regress;
SUBC> Response y;
SUBC> Nodefault;
Source DF Regression 1 x21 Error 10 Total 11
Adj SS 4290 4290 2366 6656
Adj MS
4290.5 18.14 4290.5 18.14
P-Value
SUBC>
Continuous x1 x4;
Terms x2;
Constant;
Model Summary
SUBC>
SUBC>
MTB >
TDiagnostics 0;
Residuals RESI.
S R-sq R-sq(adj) 15.3811 64.46% 60.90%
R-sq(pred) 47.83%
Coefficients
Term Constant x2
Coef -90.2 15.16
SE Coef 86.7 3.56
T-Value -1.04 4.26
P-Value 0.323 0.002
VIF 1.00
Regression Equation
y = -90.2 + 15.16 x2
236.6
F-Value
SUBC> 0.002 SUBC>
0.002
SUBC> Unstandardized;
SUBC> Tmethod;
SUBC> Tanova;
SUBC> Tsummary;
SUBC> Tcoefficients;
SUBC> Tequation;

Fits and Diagnostics for Unusual Observations
Obs y Fit Resid StdResid
1 240.00 273.70 -33.70
-2.30 R 0.89 X
2 236.00 228.21 R Large residual
X Unusual X
7.79
Prediction for y Regression Equation
MTB > Predict y;
SUBC> Nodefault;
SUBC> KPredictors 24;
SUBC> TEquation;
SUBC> TPrediction.
MTB >
y = -90.2 + 15.16 x2
Settings
Variable Setting x2 24
Prediction
Fit SE Fit 273.696 4.59597
95% CI (263.456, 283.937)
95% PI (237.928, 309.465)

2
1
0
-1
20
10
-10
-20
-30
-40
0
Scatterplot of zscore vs RESI
MTB > name c7 zscore
MTB > Let zscore = NSCOR(RESI)
MTB > Plot zscore*RESI RESI*x2; SUBC> Symbol.
MTB >
-2
-40 -30 -20 -10 0 10 20
RESI Scatterplot of RESI vs x2
21 22 23 24 25 26 x2
RESI zscore

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
[SOLVED] CS Data Display Data
$25