/* stb_image v2.26 public domain image loader http://nothings.org/stb
no warranty implied; use at your own risk
Do this:
#define STB_IMAGE_IMPLEMENTATION
before you include this file in *one* C or C++ file to create the implementation.
// i.e. it should look like this:
#include
#include
#include
#define STB_IMAGE_IMPLEMENTATION
#include stb_image.h
You can #define STBI_ASSERT(x) before the #include to avoid using assert.h.
And #define STBI_MALLOC, STBI_REALLOC, and STBI_FREE to avoid using malloc,realloc,free
QUICK NOTES:
Primarily of interest to game developers and other people who can
avoid problematic images and only need the trivial interface
JPEG baseline & progressive (12 bpc/arithmetic not supported, same as stock IJG lib)
PNG 1/2/4/8/16-bit-per-channel
TGA (not sure what subset, if a subset)
BMP non-1bpp, non-RLE
PSD (composited view only, no extra channels, 8/16 bit-per-channel)
GIF (*comp always reports as 4-channel)
HDR (radiance rgbE format)
PIC (Softimage PIC)
PNM (PPM and PGM binary only)
Animated GIF still needs a proper API, but heres one way to do it:
http://gist.github.com/urraka/685d9a6340b26b830d49
decode from memory or through FILE (define STBI_NO_STDIO to remove code)
decode from arbitrary I/O callbacks
SIMD acceleration on x86/x64 (SSE2) and ARM (NEON)
Full documentation under DOCUMENTATION below.
LICENSE
See end of file for license information.
RECENT REVISION HISTORY:
2.26(2020-07-13) many minor fixes
2.25(2020-02-02) fix warnings
2.24(2020-02-02) fix warnings; thread-local failure_reason and flip_vertically
2.23(2019-08-11) fix clang static analysis warning
2.22(2019-03-04) gif fixes, fix warnings
2.21(2019-02-25) fix typo in comment
2.20(2019-02-07) support utf8 filenames in Windows; fix warnings and platform ifdefs
2.19(2018-02-11) fix warning
2.18(2018-01-30) fix warnings
2.17(2018-01-29) bugfix, 1-bit BMP, 16-bitness query, fix warnings
2.16(2017-07-23) all functions have 16-bit variants; optimizations; bugfixes
2.15(2017-03-18) fix png-1,2,4; all Imagenet JPGs; no runtime SSE detection on GCC
2.14(2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs
2.13(2016-12-04) experimental 16-bit API, only for PNG so far; fixes
2.12(2016-04-02) fix typo in 2.11 PSD fix that caused crashes
2.11(2016-04-02) 16-bit PNGS; enable SSE2 in non-gcc x64
RGB-format JPEG; remove white matting in PSD;
allocate large structures on the stack;
correct channel count for PNG & BMP
2.10(2016-01-22) avoid warning introduced in 2.09
2.09(2016-01-16) 16-bit TGA; comments in PNM files; STBI_REALLOC_SIZED
See end of file for full revision history.
============================Contributors=========================
Image formatsExtensions, features
Sean Barrett (jpeg, png, bmp)Jetro Lauha (stbi_info)
Nicolas Schulz (hdr, psd)Martin SpartanJ Golini (stbi_info)
Jonathan Dummer (tga)James moose2000 Brown (iPhone PNG)
Jean-Marc Lienher (gif)Ben Disch Wenger (io callbacks)
Tom Seddon (pic) Omar Cornut (1/2/4-bit PNG)
Thatcher Ulrich (psd)Nicolas Guillemot (vertical flip)
Ken Miller (pgm, ppm)Richard Mitton (16-bit PSD)
github:urraka (animated gif) Junggon Kim (PNM comments)
Christopher Forseth (animated gif) Daniel Gibson (16-bit TGA)
socks-the-fox (16-bit PNG)
Jeremy Sawicki (handle all ImageNet JPGs)
Optimizations & bugfixesMikhail Morozov (1-bit BMP)
Fabian ryg GiesenAnael Seghezzi (is-16-bit query)
Arseny Kapoulkine
John-Mark Allen
Carmelo J Fdez-Aguera
Bug & warning fixes
Marc LeBlancDavid WooGuillaume George Martins Mozeiko
Christpher LloydJerry JanssonJoseph Thomson Blazej Dariusz Roszkowski
Phil JordanDave Moore Roy Eltham
Hayaki SaitoNathan ReedWon Chun
Luke Graham Johan Duparc Nick Verigakis the Horde3D community
Thomas RufRonny Chevalier github:rlyeh
Janez Zemva John Bartholomew Michal Cichongithub:romigrou
Jonathan Blow Ken Hamada Tero Hanninengithub:svdijk
Laurent Gomila Cort Strattongithub:snagar
Aruelien Pocheville Sergio GonzalezThibault Reuille github:Zelex
Cass EverittRyamond Barbierogithub:grim210
Paul Du BoisEngin ManapAldo Culquicondorgithub:sammyhw
Philipp Wiesemann Dale WeilerOriol Ferrer Mesia github:phprus
Josh Tobin Matthew Gregan github:poppolopoppo
Julian RaschkeGregory Mullen Christian Floisand github:darealshinji
Baldur Karlsson Kevin SchmidtJR Smith github:Michaelangel007
Brad WeinbergerMatvey Cherevko[reserved]
Luca SasAlexander VeselovZack Middleton [reserved]
Ryan C. Gordon[reserved][reserved]
DO NOT ADD YOUR NAME HERE
To add your name to the credits, pick a random blank space in the middle and fill it.
80% of merge conflicts on stb PRs are due to people adding their name at the end
of the credits.
*/
#ifndef STBI_INCLUDE_STB_IMAGE_H
#define STBI_INCLUDE_STB_IMAGE_H
// DOCUMENTATION
//
// Limitations:
// no 12-bit-per-channel JPEG
// no JPEGs with arithmetic coding
// GIF always returns *comp=4
//
// Basic usage (see HDR discussion below for HDR usage):
//int x,y,n;
//unsigned char *data = stbi_load(filename, &x, &y, &n, 0);
//// process data if not NULL
//// x = width, y = height, n = # 8-bit components per pixel
//// replace 0 with 1..4 to force that many components per pixel
//// but n will always be the number that it would have been if you said 0
//stbi_image_free(data)
//
// Standard parameters:
//int *x outputs image width in pixels
//int *y outputs image height in pixels
//int *channels_in_file outputs # of image components in image file
//int desired_channels if non-zero, # of image components requested in result
//
// The return value from an image loader is an unsigned char * which points
// to the pixel data, or NULL on an allocation failure or if the image is
// corrupt or invalid. The pixel data consists of *y scanlines of *x pixels,
// with each pixel consisting of N interleaved 8-bit components; the first
// pixel pointed to is top-left-most in the image. There is no padding between
// image scanlines or between pixels, regardless of format. The number of
// components N is desired_channels if desired_channels is non-zero, or
// *channels_in_file otherwise. If desired_channels is non-zero,
// *channels_in_file has the number of components that _would_ have been
// output otherwise. E.g. if you set desired_channels to 4, you will always
// get RGBA output, but you can check *channels_in_file to see if its trivially
// opaque because e.g. there were only 3 channels in the source image.
//
// An output image with N components has the following components interleaved
// in this order in each pixel:
//
// N=#comp components
// 1 grey
// 2 grey, alpha
// 3 red, green, blue
// 4 red, green, blue, alpha
//
// If image loading fails for any reason, the return value will be NULL,
// and *x, *y, *channels_in_file will be unchanged. The function
// stbi_failure_reason() can be queried for an extremely brief, end-user
// unfriendly explanation of why the load failed. Define STBI_NO_FAILURE_STRINGS
// to avoid compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly
// more user-friendly ones.
//
// Paletted PNG, BMP, GIF, and PIC images are automatically depalettized.
//
// ===========================================================================
//
// UNICODE:
//
// If compiling for Windows and you wish to use Unicode filenames, compile
// with
// #define STBI_WINDOWS_UTF8
// and pass utf8-encoded filenames. Call stbi_convert_wchar_to_utf8 to convert
// Windows wchar_t filenames to utf8.
//
// ===========================================================================
//
// Philosophy
//
// stb libraries are designed with the following priorities:
//
//1. easy to use
//2. easy to maintain
//3. good performance
//
// Sometimes I let good performance creep up in priority over easy to maintain,
// and for best performance I may provide less-easy-to-use APIs that give higher
// performance, in addition to the easy-to-use ones. Nevertheless, its important
// to keep in mind that from the standpoint of you, a client of this library,
// all you care about is #1 and #3, and stb libraries DO NOT emphasize #3 above all.
//
// Some secondary priorities arise directly from the first two, some of which
// provide more explicit reasons why performance cant be emphasized.
//
// Portable (ease of use)
// Small source code footprint (easy to maintain)
// No dependencies (ease of use)
//
// ===========================================================================
//
// I/O callbacks
//
// I/O callbacks allow you to read from arbitrary sources, like packaged
// files or some other source. Data read from callbacks are processed
// through a small internal buffer (currently 128 bytes) to try to reduce
// overhead.
//
// The three functions you must define are read (reads some bytes of data),
// skip (skips some bytes of data), eof (reports if the stream is at the end).
//
// ===========================================================================
//
// SIMD support
//
// The JPEG decoder will try to automatically use SIMD kernels on x86 when
// supported by the compiler. For ARM Neon support, you must explicitly
// request it.
//
// (The old do-it-yourself SIMD API is no longer supported in the current
// code.)
//
// On x86, SSE2 will automatically be used when available based on a run-time
// test; if not, the generic C versions are used as a fall-back. On ARM targets,
// the typical path is to have separate builds for NEON and non-NEON devices
// (at least this is true for iOS and Android). Therefore, the NEON support is
// toggled by a build flag: define STBI_NEON to get NEON loops.
//
// If for some reason you do not want to use any of SIMD code, or if
// you have issues compiling it, you can disable it entirely by
// defining STBI_NO_SIMD.
//
// ===========================================================================
//
// HDR image support (disable by defining STBI_NO_HDR)
//
// stb_image supports loading HDR images in general, and currently the Radiance
// .HDR file format specifically. You can still load any file through the existing
// interface; if you attempt to load an HDR file, it will be automatically remapped
// to LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1;
// both of these constants can be reconfigured through this interface:
//
// stbi_hdr_to_ldr_gamma(2.2f);
// stbi_hdr_to_ldr_scale(1.0f);
//
// (note, do not use _inverse_ constants; stbi_image will invert them
// appropriately).
//
// Additionally, there is a new, parallel interface for loading files as
// (linear) floats to preserve the full dynamic range:
//
//float *data = stbi_loadf(filename, &x, &y, &n, 0);
//
// If you load LDR images through this interface, those images will
// be promoted to floating point values, run through the inverse of
// constants corresponding to the above:
//
// stbi_ldr_to_hdr_scale(1.0f);
// stbi_ldr_to_hdr_gamma(2.2f);
//
// Finally, given a filename (or an open file or memory blocksee header
// file for details) containing image data, you can query for the most
// appropriate interface to use (that is, whether the image is HDR or
// not), using:
//
// stbi_is_hdr(char *filename);
//
// ===========================================================================
//
// iPhone PNG support:
//
// By default we convert iphone-formatted PNGs back to RGB, even though
// they are internally encoded differently. You can disable this conversion
// by calling stbi_convert_iphone_png_to_rgb(0), in which case
// you will always just get the native iphone format through (which
// is BGR stored in RGB).
//
// Call stbi_set_unpremultiply_on_load(1) as well to force a divide per
// pixel to remove any premultiplied alpha *only* if the image file explicitly
// says theres premultiplied data (currently only happens in iPhone images,
// and only if iPhone convert-to-rgb processing is on).
//
// ===========================================================================
//
// ADDITIONAL CONFIGURATION
//
// You can suppress implementation of any of the decoders to reduce
//your code footprint by #defining one or more of the following
//symbols before creating the implementation.
//
//STBI_NO_JPEG
//STBI_NO_PNG
//STBI_NO_BMP
//STBI_NO_PSD
//STBI_NO_TGA
//STBI_NO_GIF
//STBI_NO_HDR
//STBI_NO_PIC
//STBI_NO_PNM (.ppm and .pgm)
//
// You can request *only* certain decoders and suppress all other ones
//(this will be more forward-compatible, as addition of new decoders
//doesnt require you to disable them explicitly):
//
//STBI_ONLY_JPEG
//STBI_ONLY_PNG
//STBI_ONLY_BMP
//STBI_ONLY_PSD
//STBI_ONLY_TGA
//STBI_ONLY_GIF
//STBI_ONLY_HDR
//STBI_ONLY_PIC
//STBI_ONLY_PNM (.ppm and .pgm)
//
// If you use STBI_NO_PNG (or _ONLY_ without PNG), and you still
// want the zlib decoder to be available, #define STBI_SUPPORT_ZLIB
//
// If you define STBI_MAX_DIMENSIONS, stb_image will reject images greater
//than that size (in either width or height) without further processing.
//This is to let programs in the wild set an upper bound to prevent
//denial-of-service attacks on untrusted data, as one could generate a
//valid image of gigantic dimensions and force stb_image to allocate a
//huge block of memory and spend disproportionate time decoding it. By
//default this is set to (1 << 24), which is 16777216, but that’s still//very big.#ifndef STBI_NO_STDIO#include
#endif // STBI_NO_STDIO
#define STBI_VERSION 1
enum
{
STBI_default = 0, // only used for desired_channels
STBI_grey = 1,
STBI_grey_alpha = 2,
STBI_rgb= 3,
STBI_rgb_alpha= 4
};
#include
typedef unsigned char stbi_uc;
typedef unsigned short stbi_us;
#ifdef __cplusplus
extern C {
#endif
#ifndef STBIDEF
#ifdef STB_IMAGE_STATIC
#define STBIDEF static
#else
#define STBIDEF extern
#endif
#endif
//////////////////////////////////////////////////////////////////////////////
//
// PRIMARY API works on images of any type
//
//
// load image by filename, open file, or memory buffer
//
typedef struct
{
int(*read)(void *user,char *data,int size); // fill data with size bytes.return number of bytes actually read
void (*skip)(void *user,int n); // skip the next n bytes, or unget the last -n bytes if negative
int(*eof) (void *user); // returns nonzero if we are at end of file/data
} stbi_io_callbacks;
////////////////////////////////////
//
// 8-bits-per-channel interface
//
STBIDEF stbi_uc *stbi_load_from_memory (stbi_uc const *buffer, int len , int *x, int *y, int *channels_in_file, int desired_channels);
STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels);
#ifndef STBI_NO_STDIO
STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *channels_in_file, int desired_channels);
STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *channels_in_file, int desired_channels);
// for stbi_load_from_file, file pointer is left pointing immediately after image
#endif
#ifndef STBI_NO_GIF
STBIDEF stbi_uc *stbi_load_gif_from_memory(stbi_uc const *buffer, int len, int **delays, int *x, int *y, int *z, int *comp, int req_comp);
#endif
#ifdef STBI_WINDOWS_UTF8
STBIDEF int stbi_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input);
#endif
////////////////////////////////////
//
// 16-bits-per-channel interface
//
STBIDEF stbi_us *stbi_load_16_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels);
STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels);
#ifndef STBI_NO_STDIO
STBIDEF stbi_us *stbi_load_16(char const *filename, int *x, int *y, int *channels_in_file, int desired_channels);
STBIDEF stbi_us *stbi_load_from_file_16(FILE *f, int *x, int *y, int *channels_in_file, int desired_channels);
#endif
////////////////////////////////////
//
// float-per-channel interface
//
#ifndef STBI_NO_LINEAR
STBIDEF float *stbi_loadf_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels);
STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y,int *channels_in_file, int desired_channels);
#ifndef STBI_NO_STDIO
STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *channels_in_file, int desired_channels);
STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *channels_in_file, int desired_channels);
#endif
#endif
#ifndef STBI_NO_HDR
STBIDEF void stbi_hdr_to_ldr_gamma(float gamma);
STBIDEF void stbi_hdr_to_ldr_scale(float scale);
#endif // STBI_NO_HDR
#ifndef STBI_NO_LINEAR
STBIDEF void stbi_ldr_to_hdr_gamma(float gamma);
STBIDEF void stbi_ldr_to_hdr_scale(float scale);
#endif // STBI_NO_LINEAR
// stbi_is_hdr is always defined, but always returns false if STBI_NO_HDR
STBIDEF intstbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user);
STBIDEF intstbi_is_hdr_from_memory(stbi_uc const *buffer, int len);
#ifndef STBI_NO_STDIO
STBIDEF intstbi_is_hdr(char const *filename);
STBIDEF intstbi_is_hdr_from_file(FILE *f);
#endif // STBI_NO_STDIO
// get a VERY brief reason for failure
// on most compilers (and ALL modern mainstream compilers) this is threadsafe
STBIDEF const char *stbi_failure_reason(void);
// free the loaded image this is just free()
STBIDEF void stbi_image_free(void *retval_from_stbi_load);
// get image dimensions & components without fully decoding
STBIDEF intstbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp);
STBIDEF intstbi_info_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp);
STBIDEF intstbi_is_16_bit_from_memory(stbi_uc const *buffer, int len);
STBIDEF intstbi_is_16_bit_from_callbacks(stbi_io_callbacks const *clbk, void *user);
#ifndef STBI_NO_STDIO
STBIDEF intstbi_info (char const *filename, int *x, int *y, int *comp);
STBIDEF intstbi_info_from_file (FILE *f,int *x, int *y, int *comp);
STBIDEF intstbi_is_16_bit(char const *filename);
STBIDEF intstbi_is_16_bit_from_file(FILE *f);
#endif
// for image formats that explicitly notate that they have premultiplied alpha,
// we just return the colors as stored in the file. set this flag to force
// unpremultiplication. results are undefined if the unpremultiply overflow.
STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply);
// indicate whether we should process iphone images back to canonical format,
// or just pass them through as-is
STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert);
// flip the image vertically, so the first pixel in the output array is the bottom left
STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip);
// as above, but only applies to images loaded on the thread that calls the function
// this function is only available if your compiler supports thread-local variables;
// calling it will fail to link if your compiler doesnt
STBIDEF void stbi_set_flip_vertically_on_load_thread(int flag_true_if_should_flip);
// ZLIB client used by PNG, available for other purposes
STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen);
STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header);
STBIDEF char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen);
STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
STBIDEF char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen);
STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
#ifdef __cplusplus
}
#endif
//
//
//// end header file /////////////////////////////////////////////////////
#endif // STBI_INCLUDE_STB_IMAGE_H
#ifdef STB_IMAGE_IMPLEMENTATION
#if defined(STBI_ONLY_JPEG) || defined(STBI_ONLY_PNG) || defined(STBI_ONLY_BMP)
|| defined(STBI_ONLY_TGA) || defined(STBI_ONLY_GIF) || defined(STBI_ONLY_PSD)
|| defined(STBI_ONLY_HDR) || defined(STBI_ONLY_PIC) || defined(STBI_ONLY_PNM)
|| defined(STBI_ONLY_ZLIB)
#ifndef STBI_ONLY_JPEG
#define STBI_NO_JPEG
#endif
#ifndef STBI_ONLY_PNG
#define STBI_NO_PNG
#endif
#ifndef STBI_ONLY_BMP
#define STBI_NO_BMP
#endif
#ifndef STBI_ONLY_PSD
#define STBI_NO_PSD
#endif
#ifndef STBI_ONLY_TGA
#define STBI_NO_TGA
#endif
#ifndef STBI_ONLY_GIF
#define STBI_NO_GIF
#endif
#ifndef STBI_ONLY_HDR
#define STBI_NO_HDR
#endif
#ifndef STBI_ONLY_PIC
#define STBI_NO_PIC
#endif
#ifndef STBI_ONLY_PNM
#define STBI_NO_PNM
#endif
#endif
#if defined(STBI_NO_PNG) && !defined(STBI_SUPPORT_ZLIB) && !defined(STBI_NO_ZLIB)
#define STBI_NO_ZLIB
#endif
#include #if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) #ifndef STBI_NO_STDIO #ifndef STBI_ASSERT #ifdef __cplusplus #ifndef _MSC_VER #ifndef STBI_NO_THREAD_LOCALS #ifndef STBI_THREAD_LOCAL #ifdef _MSC_VER // should produce compiler error if size is wrong #ifdef _MSC_VER #ifdef _MSC_VER #ifdef STBI_HAS_LROTL #if defined(STBI_MALLOC) && defined(STBI_FREE) && (defined(STBI_REALLOC) || defined(STBI_REALLOC_SIZED)) #ifndef STBI_MALLOC #ifndef STBI_REALLOC_SIZED // x86/x64 detection #if defined(__GNUC__) && defined(STBI__X86_TARGET) && !defined(__SSE2__) && !defined(STBI_NO_SIMD) #if defined(__MINGW32__) && defined(STBI__X86_TARGET) && !defined(STBI_MINGW_ENABLE_SSE2) && !defined(STBI_NO_SIMD) #if !defined(STBI_NO_SIMD) && (defined(STBI__X86_TARGET) || defined(STBI__X64_TARGET)) #ifdef _MSC_VER #if _MSC_VER >= 1400// not VC6 #define STBI_SIMD_ALIGN(type, name) __declspec(align(16)) type name #if !defined(STBI_NO_JPEG) && defined(STBI_SSE2) #else // assume GCC-style if not VC++ #if !defined(STBI_NO_JPEG) && defined(STBI_SSE2) #endif // ARM NEON #ifdef STBI_NEON #ifndef STBI_SIMD_ALIGN #ifndef STBI_MAX_DIMENSIONS // initialize a callback-based context #ifndef STBI_NO_STDIO static int stbi__stdio_read(void *user, char *data, int size) static void stbi__stdio_skip(void *user, int n) static int stbi__stdio_eof(void *user) static stbi_io_callbacks stbi__stdio_callbacks = static void stbi__start_file(stbi__context *s, FILE *f) //static void stop_file(stbi__context *s) { } #endif // !STBI_NO_STDIO static void stbi__rewind(stbi__context *s) enum typedef struct #ifndef STBI_NO_JPEG #ifndef STBI_NO_PNG #ifndef STBI_NO_BMP #ifndef STBI_NO_TGA #ifndef STBI_NO_PSD #ifndef STBI_NO_HDR #ifndef STBI_NO_PIC #ifndef STBI_NO_GIF #ifndef STBI_NO_PNM static STBIDEF const char *stbi_failure_reason(void) #ifndef STBI_NO_FAILURE_STRINGS static void *stbi__malloc(size_t size) // stb_image uses ints pervasively, including for offset calculations. // return 1 if the sum is valid, 0 on overflow. #ifndef STBI_NO_JPEG #ifndef STBI_NO_HDR #ifndef STBI_NO_TGA return stbi__errpuc(unknown image type, Image not of any known type, or corrupt); static stbi_uc *stbi__convert_16_to_8(stbi__uint16 *orig, int w, int h, int channels) reduced = (stbi_uc *) stbi__malloc(img_len); for (i = 0; i < img_len; ++i)reduced[i] = (stbi_uc)((orig[i] >> 8) & 0xFF); // top half of each byte is sufficient approx of 16->8 bit scaling STBI_FREE(orig); static stbi__uint16 *stbi__convert_8_to_16(stbi_uc *orig, int w, int h, int channels) enlarged = (stbi__uint16 *) stbi__malloc(img_len*2); for (i = 0; i < img_len; ++i)enlarged[i] = (stbi__uint16)((orig[i] << 8) + orig[i]); // replicate to high and low byte, maps 0->0, 255->0xffff STBI_FREE(orig); static void stbi__vertical_flip(void *image, int w, int h, int bytes_per_pixel) for (row = 0; row < (h>>1); row++) { #elif defined(_MSC_VER) && _MSC_VER >= 1400 STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp) STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) STBIDEF stbi__uint16 *stbi_load_from_file_16(FILE *f, int *x, int *y, int *comp, int req_comp) STBIDEF stbi_us *stbi_load_16(char const *filename, int *x, int *y, int *comp, int req_comp) #endif //!STBI_NO_STDIO STBIDEF stbi_us *stbi_load_16_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels) STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels) STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) #ifndef STBI_NO_GIF result = (unsigned char*) stbi__load_gif_main(&s, delays, x, y, z, comp, req_comp); return result; #ifndef STBI_NO_LINEAR STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) #ifndef STBI_NO_STDIO STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) #endif // !STBI_NO_LINEAR // these is-hdr-or-not is defined independent of whether STBI_NO_LINEAR is STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) #ifndef STBI_NO_STDIO STBIDEF int stbi_is_hdr_from_file(FILE *f) STBIDEF intstbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user) #ifndef STBI_NO_LINEAR STBIDEF void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; } static float stbi__h2l_gamma_i=1.0f/2.2f, stbi__h2l_scale_i=1.0f; STBIDEF void stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1/gamma; } ////////////////////////////////////////////////////////////////////////////// enum static void stbi__refill_buffer(stbi__context *s) stbi_inline static stbi_uc stbi__get8(stbi__context *s) #if defined(STBI_NO_JPEG) && defined(STBI_NO_HDR) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM) return s->img_buffer >= s->img_buffer_end; #if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && defined(STBI_NO_PIC) #if defined(STBI_NO_PNG) && defined(STBI_NO_TGA) && defined(STBI_NO_HDR) && defined(STBI_NO_PNM) count = (s->io.read)(s->io_user_data, (char*) buffer + blen, n blen); if (s->img_buffer+n <= s->img_buffer_end) { #if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_PSD) && defined(STBI_NO_PIC) #if defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM) if (req_comp == img_n) return data; STBI_FREE(data); #if defined(STBI_NO_PNG) && defined(STBI_NO_PSD) #if defined(STBI_NO_PNG) && defined(STBI_NO_PSD) if (req_comp == img_n) return data; STBI_FREE(data); #ifndef STBI_NO_LINEAR ////////////////////////////////////////////////////////////////////////////// #ifndef STBI_NO_JPEG // huffman decoding acceleration typedef struct // compute actual symbols (from jpeg spec) // build non-spec acceleration table; 255 is flag for not-accelerated // build a table that decodes both magnitude and value of small ACs in if (magbits && len + magbits <= FAST_BITS) {// magnitude code followed by receive_extend codeint k = ((i << len) & ((1 << FAST_BITS) – 1)) >> (FAST_BITS magbits); // naive test is to shift the code_buffer down so k bits are if (k > j->code_bits) // convert the huffman code to the symbol id // convert the id to a symbol // bias[n] = (-1< // get some unsigned bits stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg *j) // given a value thats at position X in the zigzag stream, // decode one 64-entry block if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); t = stbi__jpeg_huff_decode(j, hdc); if (t < 0) return stbi__err(“bad huffman code”,”Corrupt JPEG”); // 0 all the ac values now so we can do it 32-bits at a time memset(data,0,64*sizeof(data[0])); diff = t ? stbi__extend_receive(j, t) : 0; dc = j->img_comp[b].dc_pred + diff; // decode AC components, see JPEG spec if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); if (j->succ_high == 0) { dc = j->img_comp[b].dc_pred + diff; // @OPTIMIZE: store non-zigzagged during the decode passes, if (j->succ_high == 0) { if (j->eob_run) { k = j->spec_start; short bit = (short) (1 << j->succ_low); if (j->eob_run) { // advance by r // take a -128..127 value and stbi__clamp it and convert to 0..255 #define stbi__f2f(x)((int) (((x) * 4096 + 0.5))) // derived from jidctint DCT_ISLOW static void stbi__idct_block(stbi_uc *out, int out_stride, short data[64]) // columns for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) {// no fast case since the first 1D IDCT spread components outSTBI__IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7])// constants scaled things up by 1<<12, plus we had 1<<2 from first// loop, plus horizontal and vertical each scale by sqrt(8) so together// we’ve got an extra 1<<3, so 1<<17 total we need to remove.// so we want to round that, which means adding 0.5 * 1<<17,// aka 65536. Also, we’ll end up with -128 to 127 that we want// to encode as 0..255 by adding 128, so we’ll add that before the shiftx0 += 65536 + (128<<17);x1 += 65536 + (128<<17);x2 += 65536 + (128<<17);x3 += 65536 + (128<<17);// tried computing the shifts into temps, or’ing the temps to see// if any were out of range, but that was slowero[0] = stbi__clamp((x0+t3) >> 17); #ifdef STBI_SSE2 // dot product constant: even elems=x, odd elems=y // out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit) // out = in << 12(in 16-bit, out 32-bit) #define dct_widen(out, in) __m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); __m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4) // wide add #define dct_wadd(out, a, b) __m128i out##_l = _mm_add_epi32(a##_l, b##_l); __m128i out##_h = _mm_add_epi32(a##_h, b##_h) // wide sub #define dct_wsub(out, a, b) __m128i out##_l = _mm_sub_epi32(a##_l, b##_l); __m128i out##_h = _mm_sub_epi32(a##_h, b##_h) // butterfly a/b, add bias, then shift by “s” and pack #define dct_bfly32o(out0, out1, a,b,bias,s) { __m128i abiased_l = _mm_add_epi32(a##_l, bias); __m128i abiased_h = _mm_add_epi32(a##_h, bias); dct_wadd(sum, abiased, b); dct_wsub(dif, abiased, b); out0 = _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); out1 = _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); } // 8-bit interleave step (for transposes) #define dct_interleave8(a, b) tmp = a; a = _mm_unpacklo_epi8(a, b); b = _mm_unpackhi_epi8(tmp, b) // 16-bit interleave step (for transposes) #define dct_interleave16(a, b) tmp = a; a = _mm_unpacklo_epi16(a, b); b = _mm_unpackhi_epi16(tmp, b) #define dct_pass(bias,shift) { /* even part */ dct_rot(t2e,t3e, row2,row6, rot0_0,rot0_1); __m128i sum04 = _mm_add_epi16(row0, row4); __m128i dif04 = _mm_sub_epi16(row0, row4); dct_widen(t0e, sum04); dct_widen(t1e, dif04); dct_wadd(x0, t0e, t3e); dct_wsub(x3, t0e, t3e); dct_wadd(x1, t1e, t2e); dct_wsub(x2, t1e, t2e); /* odd part */ dct_rot(y0o,y2o, row7,row3, rot2_0,rot2_1); dct_rot(y1o,y3o, row5,row1, rot3_0,rot3_1); __m128i sum17 = _mm_add_epi16(row1, row7); __m128i sum35 = _mm_add_epi16(row3, row5); dct_rot(y4o,y5o, sum17,sum35, rot1_0,rot1_1); dct_wadd(x4, y0o, y4o); dct_wadd(x5, y1o, y5o); dct_wadd(x6, y2o, y5o); dct_wadd(x7, y3o, y4o); dct_bfly32o(row0,row7, x0,x7,bias,shift); dct_bfly32o(row1,row6, x1,x6,bias,shift); dct_bfly32o(row2,row5, x2,x5,bias,shift); dct_bfly32o(row3,row4, x3,x4,bias,shift); } __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f)); __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f( 0.765366865f), stbi__f2f(0.5411961f)); __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), stbi__f2f(1.175875602f)); __m128i rot1_1 = dct_const(stbi__f2f(1.175875602f), stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f)); __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f( 0.298631336f), stbi__f2f(-1.961570560f)); __m128i rot2_1 = dct_const(stbi__f2f(-1.961570560f), stbi__f2f(-1.961570560f) + stbi__f2f( 3.072711026f)); __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f( 2.053119869f), stbi__f2f(-0.390180644f)); __m128i rot3_1 = dct_const(stbi__f2f(-0.390180644f), stbi__f2f(-0.390180644f) + stbi__f2f( 1.501321110f)); // rounding biases in column/row passes, see stbi__idct_block for explanation. __m128i bias_0 = _mm_set1_epi32(512); __m128i bias_1 = _mm_set1_epi32(65536 + (128<<17)); // load row0 = _mm_load_si128((const __m128i *) (data + 0*8)); row1 = _mm_load_si128((const __m128i *) (data + 1*8)); row2 = _mm_load_si128((const __m128i *) (data + 2*8)); row3 = _mm_load_si128((const __m128i *) (data + 3*8)); row4 = _mm_load_si128((const __m128i *) (data + 4*8)); row5 = _mm_load_si128((const __m128i *) (data + 5*8)); row6 = _mm_load_si128((const __m128i *) (data + 6*8)); row7 = _mm_load_si128((const __m128i *) (data + 7*8)); // column pass dct_pass(bias_0, 10); {// 16bit 8×8 transpose pass 1dct_interleave16(row0, row4);dct_interleave16(row1, row5);dct_interleave16(row2, row6);dct_interleave16(row3, row7);// transpose pass 2dct_interleave16(row0, row2);dct_interleave16(row1, row3);dct_interleave16(row4, row6);dct_interleave16(row5, row7);// transpose pass 3dct_interleave16(row0, row1);dct_interleave16(row2, row3);dct_interleave16(row4, row5);dct_interleave16(row6, row7); } // row pass dct_pass(bias_1, 17); {// pack__m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3…a7b0b1b2b3…b7__m128i p1 = _mm_packus_epi16(row2, row3);__m128i p2 = _mm_packus_epi16(row4, row5);__m128i p3 = _mm_packus_epi16(row6, row7);// 8bit 8×8 transpose pass 1dct_interleave8(p0, p2); // a0e0a1e1…dct_interleave8(p1, p3); // c0g0c1g1…// transpose pass 2dct_interleave8(p0, p1); // a0c0e0g0…dct_interleave8(p2, p3); // b0d0f0h0…// transpose pass 3dct_interleave8(p0, p2); // a0b0c0d0…dct_interleave8(p1, p3); // a4b4c4d4…// store_mm_storel_epi64((__m128i *) out, p0); out += out_stride;_mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p0, 0x4e)); out += out_stride;_mm_storel_epi64((__m128i *) out, p2); out += out_stride;_mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p2, 0x4e)); out += out_stride;_mm_storel_epi64((__m128i *) out, p1); out += out_stride;_mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p1, 0x4e)); out += out_stride;_mm_storel_epi64((__m128i *) out, p3); out += out_stride;_mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p3, 0x4e)); }#undef dct_const#undef dct_rot#undef dct_widen#undef dct_wadd#undef dct_wsub#undef dct_bfly32o#undef dct_interleave8#undef dct_interleave16#undef dct_pass}#endif // STBI_SSE2#ifdef STBI_NEON// NEON integer IDCT. should produce bit-identical// results to the generic C version.static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]){ int16x8_t row0, row1, row2, row3, row4, row5, row6, row7; int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f)); int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f)); int16x4_t rot0_2 = vdup_n_s16(stbi__f2f( 0.765366865f)); int16x4_t rot1_0 = vdup_n_s16(stbi__f2f( 1.175875602f)); int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f)); int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f)); int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f)); int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f)); int16x4_t rot3_0 = vdup_n_s16(stbi__f2f( 0.298631336f)); int16x4_t rot3_1 = vdup_n_s16(stbi__f2f( 2.053119869f)); int16x4_t rot3_2 = vdup_n_s16(stbi__f2f( 3.072711026f)); int16x4_t rot3_3 = vdup_n_s16(stbi__f2f( 1.501321110f));#define dct_long_mul(out, inq, coeff) int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff)#define dct_long_mac(out, acc, inq, coeff) int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff)#define dct_widen(out, inq) int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12)// wide add#define dct_wadd(out, a, b) int32x4_t out##_l = vaddq_s32(a##_l, b##_l); int32x4_t out##_h = vaddq_s32(a##_h, b##_h)// wide sub#define dct_wsub(out, a, b) int32x4_t out##_l = vsubq_s32(a##_l, b##_l); int32x4_t out##_h = vsubq_s32(a##_h, b##_h)// butterfly a/b, then shift using “shiftop” by “s” and pack#define dct_bfly32o(out0,out1, a,b,shiftop,s) { dct_wadd(sum, a, b); dct_wsub(dif, a, b); out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); }#define dct_pass(shiftop, shift) { /* even part */ int16x8_t sum26 = vaddq_s16(row2, row6); dct_long_mul(p1e, sum26, rot0_0); dct_long_mac(t2e, p1e, row6, rot0_1); dct_long_mac(t3e, p1e, row2, rot0_2); int16x8_t sum04 = vaddq_s16(row0, row4); int16x8_t dif04 = vsubq_s16(row0, row4); dct_widen(t0e, sum04); dct_widen(t1e, dif04); dct_wadd(x0, t0e, t3e); dct_wsub(x3, t0e, t3e); dct_wadd(x1, t1e, t2e); dct_wsub(x2, t1e, t2e); /* odd part */ int16x8_t sum15 = vaddq_s16(row1, row5); int16x8_t sum17 = vaddq_s16(row1, row7); int16x8_t sum35 = vaddq_s16(row3, row5); int16x8_t sum37 = vaddq_s16(row3, row7); int16x8_t sumodd = vaddq_s16(sum17, sum35); dct_long_mul(p5o, sumodd, rot1_0); dct_long_mac(p1o, p5o, sum17, rot1_1); dct_long_mac(p2o, p5o, sum35, rot1_2); dct_long_mul(p3o, sum37, rot2_0); dct_long_mul(p4o, sum15, rot2_1); dct_wadd(sump13o, p1o, p3o); dct_wadd(sump24o, p2o, p4o); dct_wadd(sump23o, p2o, p3o); dct_wadd(sump14o, p1o, p4o); dct_long_mac(x4, sump13o, row7, rot3_0); dct_long_mac(x5, sump24o, row5, rot3_1); dct_long_mac(x6, sump23o, row3, rot3_2); dct_long_mac(x7, sump14o, row1, rot3_3); dct_bfly32o(row0,row7, x0,x7,shiftop,shift); dct_bfly32o(row1,row6, x1,x6,shiftop,shift); dct_bfly32o(row2,row5, x2,x5,shiftop,shift); dct_bfly32o(row3,row4, x3,x4,shiftop,shift); } // load row0 = vld1q_s16(data + 0*8); row1 = vld1q_s16(data + 1*8); row2 = vld1q_s16(data + 2*8); row3 = vld1q_s16(data + 3*8); row4 = vld1q_s16(data + 4*8); row5 = vld1q_s16(data + 5*8); row6 = vld1q_s16(data + 6*8); row7 = vld1q_s16(data + 7*8); // add DC bias row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0)); // column pass dct_pass(vrshrn_n_s32, 10); // 16bit 8×8 transpose {// these three map to a single VTRN.16, VTRN.32, and VSWP, respectively.// whether compilers actually get this is another story, sadly.#define dct_trn16(x, y) { int16x8x2_t t = vtrnq_s16(x, y); x = t.val[0]; y = t.val[1]; }#define dct_trn32(x, y) { int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); x = vreinterpretq_s16_s32(t.val[0]); y = vreinterpretq_s16_s32(t.val[1]); }#define dct_trn64(x, y) { int16x8_t x0 = x; int16x8_t y0 = y; x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); }// pass 1dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6dct_trn16(row2, row3);dct_trn16(row4, row5);dct_trn16(row6, row7);// pass 2dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4dct_trn32(row1, row3);dct_trn32(row4, row6);dct_trn32(row5, row7);// pass 3dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0dct_trn64(row1, row5);dct_trn64(row2, row6);dct_trn64(row3, row7);#undef dct_trn16#undef dct_trn32#undef dct_trn64 } // row pass // vrshrn_n_s32 only supports shifts up to 16, we need // 17. so do a non-rounding shift of 16 first then follow // up with a rounding shift by 1. dct_pass(vshrn_n_s32, 16); {// pack and rounduint8x8_t p0 = vqrshrun_n_s16(row0, 1);uint8x8_t p1 = vqrshrun_n_s16(row1, 1);uint8x8_t p2 = vqrshrun_n_s16(row2, 1);uint8x8_t p3 = vqrshrun_n_s16(row3, 1);uint8x8_t p4 = vqrshrun_n_s16(row4, 1);uint8x8_t p5 = vqrshrun_n_s16(row5, 1);uint8x8_t p6 = vqrshrun_n_s16(row6, 1);uint8x8_t p7 = vqrshrun_n_s16(row7, 1);// again, these can translate into one instruction, but often don’t.#define dct_trn8_8(x, y) { uint8x8x2_t t = vtrn_u8(x, y); x = t.val[0]; y = t.val[1]; }#define dct_trn8_16(x, y) { uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); x = vreinterpret_u8_u16(t.val[0]); y = vreinterpret_u8_u16(t.val[1]); }#define dct_trn8_32(x, y) { uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); x = vreinterpret_u8_u32(t.val[0]); y = vreinterpret_u8_u32(t.val[1]); }// sadly can’t use interleaved stores here since we only write// 8 bytes to each scan line!// 8×8 8-bit transpose pass 1dct_trn8_8(p0, p1);dct_trn8_8(p2, p3);dct_trn8_8(p4, p5);dct_trn8_8(p6, p7);// pass 2dct_trn8_16(p0, p2);dct_trn8_16(p1, p3);dct_trn8_16(p4, p6);dct_trn8_16(p5, p7);// pass 3dct_trn8_32(p0, p4);dct_trn8_32(p1, p5);dct_trn8_32(p2, p6);dct_trn8_32(p3, p7);// storevst1_u8(out, p0); out += out_stride;vst1_u8(out, p1); out += out_stride;vst1_u8(out, p2); out += out_stride;vst1_u8(out, p3); out += out_stride;vst1_u8(out, p4); out += out_stride;vst1_u8(out, p5); out += out_stride;vst1_u8(out, p6); out += out_stride;vst1_u8(out, p7);#undef dct_trn8_8#undef dct_trn8_16#undef dct_trn8_32 }#undef dct_long_mul#undef dct_long_mac#undef dct_widen#undef dct_wadd#undef dct_wsub#undef dct_bfly32o#undef dct_pass}#endif // STBI_NEON#define STBI__MARKER_none0xff// if there’s a pending marker from the entropy stream, return that// otherwise, fetch from the stream and get a marker. if there’s no// marker, return 0xff, which is never a valid marker valuestatic stbi_uc stbi__get_marker(stbi__jpeg *j){ stbi_uc x; if (j->marker != STBI__MARKER_none) { x = j->marker; j->marker = STBI__MARKER_none; return x; } // in each scan, well have scan_n components, and the order static void stbi__jpeg_dequantize(short *data, stbi__uint16 *dequant) static int stbi__process_marker(stbi__jpeg *z, int m) case 0xDD: // DRI specify restart interval case 0xDB: // DQT define quantization table for (i=0; i < 64; ++i) z->dequant[t][stbi__jpeg_dezigzag[i]] = (stbi__uint16)(sixteen ? stbi__get16be(z->s) : stbi__get8(z->s)); case 0xC4: // DHT define huffman table // check for comment block or APP blocks stbi__skip(z->s, L); return stbi__err(unknown marker,Corrupt JPEG); // after we see SOS { return 1; static int stbi__free_jpeg_components(stbi__jpeg *z, int ncomp, int why) static int stbi__process_frame_header(stbi__jpeg *z, int scan) if (Lf != 8+3*s->img_n) return stbi__err(bad SOF len,Corrupt JPEG); z->rgb = 0; if (scan != STBI__SCAN_load) return 1; if (!stbi__mad3sizes_valid(s->img_x, s->img_y, s->img_n, 0)) return stbi__err(too large, Image too large to decode); for (i=0; i < s->img_n; ++i) { // compute interleaved mcu info for (i=0; i < s->img_n; ++i) { return 1; // use comparisons since in some cases we handle more than one case (e.g. SOF) #define stbi__SOF_progressive(x) ((x) == 0xc2) static int stbi__decode_jpeg_header(stbi__jpeg *z, int scan) // decode image to YCbCr format // static jfif-centered resampling (across block boundaries) typedef stbi_uc *(*resample_row_func)(stbi_uc *out, stbi_uc *in0, stbi_uc *in1, #define stbi__div4(x) ((stbi_uc) ((x) >> 2)) static stbi_uc *resample_row_1(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) static stbi_uc* stbi__resample_row_v_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) static stbi_uc *stbi__resample_row_hv_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) t1 = 3*in_near[0] + in_far[0]; #ifdef STBI_SSE2 #ifdef STBI_NEON // clean up the temporary component buffers typedef struct // fast 0..255 * 0..255 => 0..255 rounded multiplication static stbi_uc *load_jpeg_image(stbi__jpeg *z, int *out_x, int *out_y, int *comp, int req_comp) // validate req_comp // load a jpeg image from whichever source, but leave in YCbCr format // determine actual number of components to generate is_rgb = z->s->img_n == 3 && (z->rgb == 3 || (z->app14_color_transform == 0 && !z->jfif)); if (z->s->img_n == 3 && n < 3 && !is_rgb)decode_n = 1; elsedecode_n = z->s->img_n; // resample and color-convert stbi__resample res_comp[4]; for (k=0; k < decode_n; ++k) { stbi__resample *r = &res_comp[k]; // allocate line buffer big enough for upsampling off the edges // with upsample factor of 4 z->img_comp[k].linebuf = (stbi_uc *) stbi__malloc(z->s->img_x + 3); r->hs= z->img_h_max / z->img_comp[k].h; if(r->hs == 1 && r->vs == 1) r->resample = resample_row_1; // cant error after this so, this is safe // now go ahead and resample static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) static int stbi__jpeg_test(stbi__context *s) static int stbi__jpeg_info_raw(stbi__jpeg *j, int *x, int *y, int *comp) static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp) // public domain zlib decodev0.2Sean Barrett 2006-11-18 #ifndef STBI_NO_ZLIB // fast-way is faster to check than jpeg huffman, but slow way is slower static int stbi__zbuild_huffman(stbi__zhuffman *z, const stbi_uc *sizelist, int num) // DEFLATE spec for generating codes stbi_inline static stbi_uc stbi__zget8(stbi__zbuf *z) static void stbi__fill_bits(stbi__zbuf *z) static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z) stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z) static int stbi__zexpand(stbi__zbuf *z, char *zout, int n)// need to make room for n bytes static const int stbi__zlength_base[31] = { static const int stbi__zlength_extra[31]= static const int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193, static const int stbi__zdist_extra[32] = static int stbi__parse_huffman_block(stbi__zbuf *a) static int stbi__compute_huffman_codes(stbi__zbuf *a) int hlit= stbi__zreceive(a,5) + 257; memset(codelength_sizes, 0, sizeof(codelength_sizes)); static int stbi__parse_uncompressed_block(stbi__zbuf *a) static int stbi__parse_zlib_header(stbi__zbuf *a) static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header) return stbi__parse_zlib(a, parse_header); STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen) STBIDEF char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen) STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header) STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen) STBIDEF char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen) STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen) // public domain baseline PNG decoder v0.10Sean Barrett 2006-11-18 #ifndef STBI_NO_PNG static stbi__pngchunk stbi__get_chunk_header(stbi__context *s) static int stbi__check_png_header(stbi__context *s) int output_bytes = out_n*bytes; STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1); if (!stbi__mad3sizes_valid(img_n, x, depth, 7)) return stbi__err(too large, Corrupt PNG); // we used to check for exact match between raw_len and img_len on non-interlaced PNGs, if (filter > 4) if (depth < 8) { if (img_width_bytes > x) return stbi__err(invalid width,Corrupt PNG); // if first row, use special filter that doesnt sample previous row // handle first byte explicitly if (depth == 8) { // this is a little gross, so that we dont switch per-pixel or per-component // the loop above sets the high byte of the pixels alpha, but for // note that the final byte might overshoot and write more data than desired. if (depth == 4) { for(i=0; i < x*y*out_n; ++i,cur16++,cur+=2) { *cur16 = (cur[0] << 8) | cur[1];} } return 1;}static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced){ int bytes = (depth == 16 ? 2 : 1); int out_bytes = out_n * bytes; stbi_uc *final; int p; if (!interlaced)return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color); // de-interlacing return 1; static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n) // compute color-based transparency, assuming weve if (out_n == 2) { // compute color-based transparency, assuming weve if (out_n == 2) { p = (stbi_uc *) stbi__malloc_mad2(pixel_count, pal_img_n, 0); // between here and free(out) below, exitting would leak if (pal_img_n == 3) { STBI_NOTUSED(len); return 1; static int stbi__unpremultiply_on_load = 0; STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply) STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert) static void stbi__de_iphone(stbi__png *z) if (s->img_out_n == 3) {// convert bgr to rgb z->expanded = NULL; if (!stbi__check_png_header(s)) return 0; if (scan == STBI__SCAN_type) return 1; for (;;) { case STBI__PNG_TYPE(P,L,T,E):{ case STBI__PNG_TYPE(I,D,A,T): { case STBI__PNG_TYPE(I,E,N,D): { default: static void *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp, stbi__result_info *ri) return result; static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) static int stbi__png_test(stbi__context *s) static int stbi__png_info_raw(stbi__png *p, int *x, int *y, int *comp) static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp) static int stbi__png_is16(stbi__context *s) // Microsoft/Windows BMP image #ifndef STBI_NO_BMP static int stbi__bmp_test(stbi__context *s) // returns 0..31 for the highest set bit static int stbi__bitcount(unsigned int a) // extract an arbitrarily-aligned N-bit value (N=bits) typedef struct static void *stbi__bmp_parse_header(stbi__context *s, stbi__bmp_data *info) if (info->offset < 0) return stbi__errpuc(“bad BMP”, “bad BMP”); if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) return stbi__errpuc(“unknown BMP”, “BMP type not supported: unknown”); if (hsz == 12) {s->img_x = stbi__get16le(s); if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__errpuc(too large,Very large image (corrupt?)); mr = info.mr; if (info.hsz == 12) { if (info.bpp == 24 && ma == 0xff000000) // sanity-check size out = (stbi_uc *) stbi__malloc_mad3(target, s->img_x, s->img_y, 0); // if alpha channel is all 0s, replace with all 255s if (flip_vertically) { if (req_comp && req_comp != target) { *x = s->img_x; // Targa Truevision TGA static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp) // some people claim that the most significant bit might be used for alpha static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) if (tga_height > STBI_MAX_DIMENSIONS) return stbi__errpuc(too large,Very large image (corrupt?)); // do a tiny bit of precessing // If Im paletted, then Ill use the number of bits from the palette if(!tga_comp) // shouldnt really happen, stbi__tga_test() should have ensured basic consistency // tga info if (!stbi__mad3sizes_valid(tga_width, tga_height, tga_comp, 0)) tga_data = (unsigned char*)stbi__malloc_mad3(tga_width, tga_height, tga_comp, 0); // skip to the datas starting position (offset usually = 0) if ( !tga_indexed && !tga_is_RLE && !tga_rgb16 ) { // swap RGB if the source data was RGB16, it already is in the right order return 1; static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc) // Check identifier // Check file type version. // Skip 6 reserved bytes. // Read the number of channels (R, G, B, A, etc). // Read the rows and columns of the image. if (h > STBI_MAX_DIMENSIONS) return stbi__errpuc(too large,Very large image (corrupt?)); // Make sure the depth is 8 bits. // Make sure the color mode is RGB. // Skip the Mode Data.(Its the palette for indexed color; other info for other modes.) // Skip the image resources.(resolution, pen tool paths, etc) // Skip the reserved data. // Find out if the data is compressed. // Check size // Create the destination image. if (!compression && bitdepth == 16 && bpc == 16) { if (!out) return stbi__errpuc(outofmem, Out of memory); // Initialize the data to zero. // Finally, the image data. // The RLE-compressed data is preceded by a 2-byte data count for each row in the data, // Read the RLE data by channel. if (comp) *comp = 4; return out; // ************************************************************************************************* #ifndef STBI_NO_PIC return dest; static void stbi__copyval(int channel,stbi_uc *dest,const stbi_uc *src) for (i=0;i<4; ++i, mask>>=1) static stbi_uc *stbi__pic_load_core(stbi__context *s,int width,int height,int *comp, stbi_uc *result) // this will (should) cater for even some bizarre stuff like having data if (num_packets==sizeof(packets)/sizeof(packets[0])) packet = &packets[num_packets++]; chained = stbi__get8(s); act_comp |= packet->channel; if (stbi__at_eof(s))return stbi__errpuc(bad file,file too short (reading packets)); *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel? for(y=0; y case 0: {//uncompressed for(x=0;x case 1://Pure RLE while (left>0) { count=stbi__get8(s); if (count > left) if (!stbi__readval(s,packet->channel,value))return 0; for(i=0; i case 2: {//Mixed RLE if (count >= 128) { // Repeated if (count==128) if (!stbi__readval(s,packet->channel,value)) for(i=0;i for(i=0;i return result; static void *stbi__pic_load(stbi__context *s,int *px,int *py,int *comp,int req_comp, stbi__result_info *ri) if (!comp) comp = &internal_comp; for (i=0; i<92; ++i)stbi__get8(s); x = stbi__get16be(s); y = stbi__get16be(s); if (y > STBI_MAX_DIMENSIONS) return stbi__errpuc(too large,Very large image (corrupt?)); if (stbi__at_eof(s))return stbi__errpuc(bad file,file too short (pic header)); stbi__get32be(s); //skip `ratio // intermediate buffer is RGBA if (!stbi__pic_load_core(s,x,y,comp, result)) { return result; static int stbi__pic_test(stbi__context *s) // ************************************************************************************************* #ifndef STBI_NO_GIF typedef struct static int stbi__gif_test_raw(stbi__context *s) static int stbi__gif_test(stbi__context *s) static void stbi__gif_parse_colortable(stbi__context *s, stbi_uc pal[256][4], int num_entries, int transp) if (g->w > STBI_MAX_DIMENSIONS) return stbi__err(too large,Very large image (corrupt?)); if (comp != 0) *comp = 4;// cant actually tell whether its 3 or 4 until we parse the comments if (is_info) return 1; if (g->flags & 0x80) return 1; static int stbi__gif_info_raw(stbi__context *s, int *x, int *y, int *comp) static void stbi__out_gif_code(stbi__gif *g, stbi__uint16 code) // recurse to decode the prefixes, since the linked-list is backwards, if (g->cur_y >= g->max_y) return; idx = g->cur_x + g->cur_y; c = &g->color_table[g->codes[code].suffix * 4]; if (g->cur_x >= g->max_x) { while (g->cur_y >= g->max_y && g->parse > 0) { static stbi_uc *stbi__process_gif_raster(stbi__context *s, stbi__gif *g) lzw_cs = stbi__get8(s); // support no starting clear code len = 0; p->prefix = (stbi__int16) oldcode; stbi__out_gif_code(g, (stbi__uint16) code); if ((avail & codemask) == 0 && avail <= 0x0FFF) { codesize++; codemask = (1 << codesize) – 1;}oldcode = code; } else {return stbi__errpuc(“illegal code in raster”, “Corrupt GIF”); }} }}// this function is designed to support animated gifs, although stb_image doesn’t support it// two back is the image from two frames ago, used for a very specific disposal formatstatic stbi_uc *stbi__gif_load_next(stbi__context *s, stbi__gif *g, int *comp, int req_comp, stbi_uc *two_back){ int dispose; int first_frame; int pi; int pcount; STBI_NOTUSED(req_comp); // on first frame, any non-written pixels get the background colour (non-transparent) first_frame = 0; if (g->out == 0) { // image is treated as transparent at the start ie, nothing overwrites the current background; if ((dispose == 3) && (two_back == 0)) { if (dispose == 3) { // use previous graphic // background is what out is after the undoing of the previou frame; // clear my history; for (;;) { x = stbi__get16le(s); g->line_size = g->w * 4; // if the width of the specified rectangle is 0, that means g->lflags = stbi__get8(s); if (g->lflags & 0x40) { if (g->lflags & 0x80) { o = stbi__process_gif_raster(s, g); // if this was the first frame, return o; case 0x21: // Comment Extension. // unset old transparent case 0x3B: // gif stream termination code default: static void *stbi__load_gif_main(stbi__context *s, int **delays, int *x, int *y, int *z, int *comp, int req_comp) do { if (u) { if (out) { if (delays) { if (delays) { // free temp buffer; // do the final conversion after loading everything; *z = layers; static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) u = stbi__gif_load_next(s, &g, comp, req_comp, 0); // moved conversion to after successful load so that the same // free buffers needed for multiple frame loading; return u; static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp) // ************************************************************************************************* static int stbi__hdr_test(stbi__context* s) #define STBI__HDR_BUFLEN1024 c = (char) stbi__get8(z); while (!stbi__at_eof(z) && c != buffer[len] = 0; static void stbi__hdr_convert(float *output, stbi_uc *input, int req_comp) *x = width; if (comp) *comp = 3; if (!stbi__mad4sizes_valid(width, height, req_comp, sizeof(float), 0)) // Read data // Load image data #ifndef STBI_NO_PSD static int stbi__psd_is16(stbi__context *s) #ifndef STBI_NO_PIC if (!x) x = &dummy if (!stbi__pic_is4(s,x53x80xF6x34)) { stbi__skip(s, 88); *x = stbi__get16be(s); if (stbi__at_eof(s)) { *comp = (act_comp & 0x10 ? 4 : 3); return 1; // ************************************************************************************************* #ifndef STBI_NO_PNM static intstbi__pnm_test(stbi__context *s) static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) if (!stbi__pnm_info(s, (int *)&s->img_x, (int *)&s->img_y, (int *)&s->img_n)) if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__errpuc(too large,Very large image (corrupt?)); *x = s->img_x; if (!stbi__mad3sizes_valid(s->img_n, s->img_x, s->img_y, 0)) out = (stbi_uc *) stbi__malloc_mad3(s->img_n, s->img_x, s->img_y, 0); if (req_comp && req_comp != s->img_n) { static intstbi__pnm_isspace(char c) static void stbi__pnm_skip_whitespace(stbi__context *s, char *c) if (stbi__at_eof(s) || *c != #) while (!stbi__at_eof(s) && *c != static intstbi__pnm_isdigit(char c) static int stbi__info_main(stbi__context *s, int *x, int *y, int *comp) #ifndef STBI_NO_PNG #ifndef STBI_NO_GIF #ifndef STBI_NO_BMP #ifndef STBI_NO_PSD #ifndef STBI_NO_PIC #ifndef STBI_NO_PNM #ifndef STBI_NO_HDR // test tga last because its a crappy test! static int stbi__is_16_main(stbi__context *s) #ifndef STBI_NO_PSD return 0; #ifndef STBI_NO_STDIO STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp) STBIDEF int stbi_is_16_bit(char const *filename) STBIDEF int stbi_is_16_bit_from_file(FILE *f) STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp) STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, int *x, int *y, int *comp) STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const *buffer, int len) STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const *c, void *user) #endif // STB_IMAGE_IMPLEMENTATION /* /* This software is available under 2 licenses choose whichever you prefer. ALTERNATIVE A MIT License ALTERNATIVE B Public Domain (www.unlicense.org) */
#include
#include
#include
#include
#include
#endif
#include
#endif
#include
#define STBI_ASSERT(x) assert(x)
#endif
#define STBI_EXTERN extern C
#else
#define STBI_EXTERN extern
#endif
#ifdef __cplusplus
#define stbi_inline inline
#else
#define stbi_inline
#endif
#else
#define stbi_inline __forceinline
#endif
#if defined(__cplusplus) &&__cplusplus >= 201103L
#define STBI_THREAD_LOCAL thread_local
#elif defined(__GNUC__) && __GNUC__ < 5#define STBI_THREAD_LOCAL __thread #elif defined(_MSC_VER)#define STBI_THREAD_LOCAL __declspec(thread) #elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 201112L && !defined(__STDC_NO_THREADS__)
#define STBI_THREAD_LOCAL _Thread_local
#endif
#if defined(__GNUC__)
#define STBI_THREAD_LOCAL __thread
#endif
#endif
#endif
typedef unsigned short stbi__uint16;
typedef signed short stbi__int16;
typedef unsigned int stbi__uint32;
typedef signed int stbi__int32;
#else
#include
typedef uint16_t stbi__uint16;
typedef int16_tstbi__int16;
typedef uint32_t stbi__uint32;
typedef int32_tstbi__int32;
#endif
typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1];
#define STBI_NOTUSED(v)(void)(v)
#else
#define STBI_NOTUSED(v)(void)sizeof(v)
#endif
#define STBI_HAS_LROTL
#endif
#define stbi_lrot(x,y)_lrotl(x,y)
#else
#define stbi_lrot(x,y)(((x) << (y)) | ((x) >> (32 (y))))
#endif
// ok
#elif !defined(STBI_MALLOC) && !defined(STBI_FREE) && !defined(STBI_REALLOC) && !defined(STBI_REALLOC_SIZED)
// ok
#else
#error Must define all or none of STBI_MALLOC, STBI_FREE, and STBI_REALLOC (or STBI_REALLOC_SIZED).
#endif
#define STBI_MALLOC(sz) malloc(sz)
#define STBI_REALLOC(p,newsz) realloc(p,newsz)
#define STBI_FREE(p)free(p)
#endif
#define STBI_REALLOC_SIZED(p,oldsz,newsz) STBI_REALLOC(p,newsz)
#endif
#if defined(__x86_64__) || defined(_M_X64)
#define STBI__X64_TARGET
#elif defined(__i386) || defined(_M_IX86)
#define STBI__X86_TARGET
#endif
// gcc doesnt support sse2 intrinsics unless you compile with -msse2,
// which in turn means it gets to use SSE2 everywhere. This is unfortunate,
// but previous attempts to provide the SSE2 functions with runtime
// detection caused numerous issues. The way architecture extensions are
// exposed in GCC/Clang is, sadly, not really suited for one-file libs.
// New behavior: if compiled with -msse2, we use SSE2 without any
// detection; if not, we dont use it at all.
#define STBI_NO_SIMD
#endif
// Note that __MINGW32__ doesnt actually mean 32-bit, so we have to avoid STBI__X64_TARGET
//
// 32-bit MinGW wants ESP to be 16-byte aligned, but this is not in the
// Windows ABI and VC++ as well as Windows DLLs dont maintain that invariant.
// As a result, enabling SSE2 on 32-bit MinGW is dangerous when not
// simultaneously enabling -mstackrealign.
//
// See https://github.com/nothings/stb/issues/81 for more information.
//
// So default to no SSE2 on 32-bit MinGW. If youve read this far and added
// -mstackrealign to your build settings, feel free to #define STBI_MINGW_ENABLE_SSE2.
#define STBI_NO_SIMD
#endif
#define STBI_SSE2
#include
#include
static int stbi__cpuid3(void)
{
int info[4];
__cpuid(info,1);
return info[3];
}
#else
static int stbi__cpuid3(void)
{
int res;
__asm {
moveax,1
cpuid
movres,edx
}
return res;
}
#endif
static int stbi__sse2_available(void)
{
int info3 = stbi__cpuid3();
return ((info3 >> 26) & 1) != 0;
}
#endif
#define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
static int stbi__sse2_available(void)
{
// If were even attempting to compile this on GCC/Clang, that means
// -msse2 is on, which means the compiler is allowed to use SSE2
// instructions at will, and so are we.
return 1;
}
#endif
#endif
#if defined(STBI_NO_SIMD) && defined(STBI_NEON)
#undef STBI_NEON
#endif
#include
// assume GCC or Clang on ARM targets
#define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
#endif
#define STBI_SIMD_ALIGN(type, name) type name
#endif
#define STBI_MAX_DIMENSIONS (1 << 24)#endif///////////////////////////////////////////////////stbi__context struct and start_xxx functions// stbi__context structure is our basic context used by all images, so it// contains all the IO context, plus some basic image informationtypedef struct{ stbi__uint32 img_x, img_y; int img_n, img_out_n; stbi_io_callbacks io; void *io_user_data; int read_from_callbacks; int buflen; stbi_uc buffer_start[128]; int callback_already_read; stbi_uc *img_buffer, *img_buffer_end; stbi_uc *img_buffer_original, *img_buffer_original_end;} stbi__context;static void stbi__refill_buffer(stbi__context *s);// initialize a memory-decode contextstatic void stbi__start_mem(stbi__context *s, stbi_uc const *buffer, int len){ s->io.read = NULL;
s->read_from_callbacks = 0;
s->callback_already_read = 0;
s->img_buffer = s->img_buffer_original = (stbi_uc *) buffer;
s->img_buffer_end = s->img_buffer_original_end = (stbi_uc *) buffer+len;
}
static void stbi__start_callbacks(stbi__context *s, stbi_io_callbacks *c, void *user)
{
s->io = *c;
s->io_user_data = user;
s->buflen = sizeof(s->buffer_start);
s->read_from_callbacks = 1;
s->callback_already_read = 0;
s->img_buffer = s->img_buffer_original = s->buffer_start;
stbi__refill_buffer(s);
s->img_buffer_original_end = s->img_buffer_end;
}
{
return (int) fread(data,1,size,(FILE*) user);
}
{
int ch;
fseek((FILE*) user, n, SEEK_CUR);
ch = fgetc((FILE*) user);/* have to read a byte to reset feof()s flag */
if (ch != EOF) {
ungetc(ch, (FILE *) user);/* push byte back onto stream if valid. */
}
}
{
return feof((FILE*) user) || ferror((FILE *) user);
}
{
stbi__stdio_read,
stbi__stdio_skip,
stbi__stdio_eof,
};
{
stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *) f);
}
{
// conceptually rewind SHOULD rewind to the beginning of the stream,
// but we just rewind to the beginning of the initial buffer, because
// we only use it after doing test, which only ever looks at at most 92 bytes
s->img_buffer = s->img_buffer_original;
s->img_buffer_end = s->img_buffer_original_end;
}
{
STBI_ORDER_RGB,
STBI_ORDER_BGR
};
{
int bits_per_channel;
int num_channels;
int channel_order;
} stbi__result_info;
static intstbi__jpeg_test(stbi__context *s);
static void*stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
static intstbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp);
#endif
static intstbi__png_test(stbi__context *s);
static void*stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
static intstbi__png_info(stbi__context *s, int *x, int *y, int *comp);
static intstbi__png_is16(stbi__context *s);
#endif
static intstbi__bmp_test(stbi__context *s);
static void*stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
static intstbi__bmp_info(stbi__context *s, int *x, int *y, int *comp);
#endif
static intstbi__tga_test(stbi__context *s);
static void*stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
static intstbi__tga_info(stbi__context *s, int *x, int *y, int *comp);
#endif
static intstbi__psd_test(stbi__context *s);
static void*stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc);
static intstbi__psd_info(stbi__context *s, int *x, int *y, int *comp);
static intstbi__psd_is16(stbi__context *s);
#endif
static intstbi__hdr_test(stbi__context *s);
static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
static intstbi__hdr_info(stbi__context *s, int *x, int *y, int *comp);
#endif
static intstbi__pic_test(stbi__context *s);
static void*stbi__pic_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
static intstbi__pic_info(stbi__context *s, int *x, int *y, int *comp);
#endif
static intstbi__gif_test(stbi__context *s);
static void*stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
static void*stbi__load_gif_main(stbi__context *s, int **delays, int *x, int *y, int *z, int *comp, int req_comp);
static intstbi__gif_info(stbi__context *s, int *x, int *y, int *comp);
#endif
static intstbi__pnm_test(stbi__context *s);
static void*stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
static intstbi__pnm_info(stbi__context *s, int *x, int *y, int *comp);
#endif
#ifdef STBI_THREAD_LOCAL
STBI_THREAD_LOCAL
#endif
const char *stbi__g_failure_reason;
{
return stbi__g_failure_reason;
}
static int stbi__err(const char *str)
{
stbi__g_failure_reason = str;
return 0;
}
#endif
{
return STBI_MALLOC(size);
}
// therefore the largest decoded image size we can support with the
// current code, even on 64-bit targets, is INT_MAX. this is not a
// significant limitation for the intended use case.
//
// we do, however, need to make sure our size calculations dont
// overflow. hence a few helper functions for size calculations that
// multiply integers together, making sure that theyre non-negative
// and no overflow occurs.
// negative terms are considered invalid.
static int stbi__addsizes_valid(int a, int b)
{
if (b < 0) return 0; // now 0 <= b <= INT_MAX, hence also // 0 <= INT_MAX – b <= INTMAX. // And “a + b <= INT_MAX” (which might overflow) is the // same as a <= INT_MAX – b (no overflow) return a <= INT_MAX – b;}// returns 1 if the product is valid, 0 on overflow.// negative factors are considered invalid.static int stbi__mul2sizes_valid(int a, int b){ if (a < 0 || b < 0) return 0; if (b == 0) return 1; // mul-by-0 is always safe // portable way to check for no overflows in a*b return a <= INT_MAX/b;}#if !defined(STBI_NO_JPEG) || !defined(STBI_NO_PNG) || !defined(STBI_NO_TGA) || !defined(STBI_NO_HDR)// returns 1 if “a*b + add” has no negative terms/factors and doesn’t overflowstatic int stbi__mad2sizes_valid(int a, int b, int add){ return stbi__mul2sizes_valid(a, b) && stbi__addsizes_valid(a*b, add);}#endif// returns 1 if “a*b*c + add” has no negative terms/factors and doesn’t overflowstatic int stbi__mad3sizes_valid(int a, int b, int c, int add){ return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) &&stbi__addsizes_valid(a*b*c, add);}// returns 1 if “a*b*c*d + add” has no negative terms/factors and doesn’t overflow#if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR)static int stbi__mad4sizes_valid(int a, int b, int c, int d, int add){ return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) &&stbi__mul2sizes_valid(a*b*c, d) && stbi__addsizes_valid(a*b*c*d, add);}#endif#if !defined(STBI_NO_JPEG) || !defined(STBI_NO_PNG) || !defined(STBI_NO_TGA) || !defined(STBI_NO_HDR)// mallocs with size overflow checkingstatic void *stbi__malloc_mad2(int a, int b, int add){ if (!stbi__mad2sizes_valid(a, b, add)) return NULL; return stbi__malloc(a*b + add);}#endifstatic void *stbi__malloc_mad3(int a, int b, int c, int add){ if (!stbi__mad3sizes_valid(a, b, c, add)) return NULL; return stbi__malloc(a*b*c + add);}#if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR)static void *stbi__malloc_mad4(int a, int b, int c, int d, int add){ if (!stbi__mad4sizes_valid(a, b, c, d, add)) return NULL; return stbi__malloc(a*b*c*d + add);}#endif// stbi__err – error// stbi__errpf – error returning pointer to float// stbi__errpuc – error returning pointer to unsigned char#ifdef STBI_NO_FAILURE_STRINGS #define stbi__err(x,y)0#elif defined(STBI_FAILURE_USERMSG) #define stbi__err(x,y)stbi__err(y)#else #define stbi__err(x,y)stbi__err(x)#endif#define stbi__errpf(x,y) ((float *)(size_t) (stbi__err(x,y)?NULL:NULL))#define stbi__errpuc(x,y)((unsigned char *)(size_t) (stbi__err(x,y)?NULL:NULL))STBIDEF void stbi_image_free(void *retval_from_stbi_load){ STBI_FREE(retval_from_stbi_load);}#ifndef STBI_NO_LINEARstatic float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp);#endif#ifndef STBI_NO_HDRstatic stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp);#endifstatic int stbi__vertically_flip_on_load_global = 0;STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip){ stbi__vertically_flip_on_load_global = flag_true_if_should_flip;}#ifndef STBI_THREAD_LOCAL#define stbi__vertically_flip_on_loadstbi__vertically_flip_on_load_global#elsestatic STBI_THREAD_LOCAL int stbi__vertically_flip_on_load_local, stbi__vertically_flip_on_load_set;STBIDEF void stbi_set_flip_vertically_on_load_thread(int flag_true_if_should_flip){ stbi__vertically_flip_on_load_local = flag_true_if_should_flip; stbi__vertically_flip_on_load_set = 1;}#define stbi__vertically_flip_on_load(stbi__vertically_flip_on_load_set ? stbi__vertically_flip_on_load_local : stbi__vertically_flip_on_load_global)#endif // STBI_THREAD_LOCALstatic void *stbi__load_main(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc){ memset(ri, 0, sizeof(*ri)); // make sure it’s initialized if we add new fields ri->bits_per_channel = 8; // default is 8 so most paths dont have to be changed
ri->channel_order = STBI_ORDER_RGB; // all current input & output are this, but this is here so we can add BGR order
ri->num_channels = 0;
if (stbi__jpeg_test(s)) return stbi__jpeg_load(s,x,y,comp,req_comp, ri);
#endif
#ifndef STBI_NO_PNG
if (stbi__png_test(s))return stbi__png_load(s,x,y,comp,req_comp, ri);
#endif
#ifndef STBI_NO_BMP
if (stbi__bmp_test(s))return stbi__bmp_load(s,x,y,comp,req_comp, ri);
#endif
#ifndef STBI_NO_GIF
if (stbi__gif_test(s))return stbi__gif_load(s,x,y,comp,req_comp, ri);
#endif
#ifndef STBI_NO_PSD
if (stbi__psd_test(s))return stbi__psd_load(s,x,y,comp,req_comp, ri, bpc);
#else
STBI_NOTUSED(bpc);
#endif
#ifndef STBI_NO_PIC
if (stbi__pic_test(s))return stbi__pic_load(s,x,y,comp,req_comp, ri);
#endif
#ifndef STBI_NO_PNM
if (stbi__pnm_test(s))return stbi__pnm_load(s,x,y,comp,req_comp, ri);
#endif
if (stbi__hdr_test(s)) {
float *hdr = stbi__hdr_load(s, x,y,comp,req_comp, ri);
return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp);
}
#endif
// test tga last because its a crappy test!
if (stbi__tga_test(s))
return stbi__tga_load(s,x,y,comp,req_comp, ri);
#endif
}
{
int i;
int img_len = w * h * channels;
stbi_uc *reduced;
if (reduced == NULL) return stbi__errpuc(outofmem, Out of memory);
return reduced;
}
{
int i;
int img_len = w * h * channels;
stbi__uint16 *enlarged;
if (enlarged == NULL) return (stbi__uint16 *) stbi__errpuc(outofmem, Out of memory);
return enlarged;
}
{
int row;
size_t bytes_per_row = (size_t)w * bytes_per_pixel;
stbi_uc temp[2048];
stbi_uc *bytes = (stbi_uc *)image;
stbi_uc *row0 = bytes + row*bytes_per_row;
stbi_uc *row1 = bytes + (h row 1)*bytes_per_row;
// swap row0 with row1
size_t bytes_left = bytes_per_row;
while (bytes_left) {
size_t bytes_copy = (bytes_left < sizeof(temp)) ? bytes_left : sizeof(temp); memcpy(temp, row0, bytes_copy); memcpy(row0, row1, bytes_copy); memcpy(row1, temp, bytes_copy); row0 += bytes_copy; row1 += bytes_copy; bytes_left -= bytes_copy;} }}#ifndef STBI_NO_GIFstatic void stbi__vertical_flip_slices(void *image, int w, int h, int z, int bytes_per_pixel){ int slice; int slice_size = w * h * bytes_per_pixel; stbi_uc *bytes = (stbi_uc *)image; for (slice = 0; slice < z; ++slice) {stbi__vertical_flip(bytes, w, h, bytes_per_pixel);bytes += slice_size; }}#endifstatic unsigned char *stbi__load_and_postprocess_8bit(stbi__context *s, int *x, int *y, int *comp, int req_comp){ stbi__result_info ri; void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 8); if (result == NULL)return NULL; // it is the responsibility of the loaders to make sure we get either 8 or 16 bit. STBI_ASSERT(ri.bits_per_channel == 8 || ri.bits_per_channel == 16); if (ri.bits_per_channel != 8) {result = stbi__convert_16_to_8((stbi__uint16 *) result, *x, *y, req_comp == 0 ? *comp : req_comp);ri.bits_per_channel = 8; } // @TODO: move stbi__convert_format to here if (stbi__vertically_flip_on_load) {int channels = req_comp ? req_comp : *comp;stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi_uc)); } return (unsigned char *) result;}static stbi__uint16 *stbi__load_and_postprocess_16bit(stbi__context *s, int *x, int *y, int *comp, int req_comp){ stbi__result_info ri; void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 16); if (result == NULL)return NULL; // it is the responsibility of the loaders to make sure we get either 8 or 16 bit. STBI_ASSERT(ri.bits_per_channel == 8 || ri.bits_per_channel == 16); if (ri.bits_per_channel != 16) {result = stbi__convert_8_to_16((stbi_uc *) result, *x, *y, req_comp == 0 ? *comp : req_comp);ri.bits_per_channel = 16; } // @TODO: move stbi__convert_format16 to here // @TODO: special case RGB-to-Y (and RGBA-to-YA) for 8-bit-to-16-bit case to keep more precision if (stbi__vertically_flip_on_load) {int channels = req_comp ? req_comp : *comp;stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi__uint16)); } return (stbi__uint16 *) result;}#if !defined(STBI_NO_HDR) && !defined(STBI_NO_LINEAR)static void stbi__float_postprocess(float *result, int *x, int *y, int *comp, int req_comp){ if (stbi__vertically_flip_on_load && result != NULL) {int channels = req_comp ? req_comp : *comp;stbi__vertical_flip(result, *x, *y, channels * sizeof(float)); }}#endif#ifndef STBI_NO_STDIO#if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8)STBI_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar(unsigned int cp, unsigned long flags, const char *str, int cbmb, wchar_t *widestr, int cchwide);STBI_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, const wchar_t *widestr, int cchwide, char *str, int cbmb, const char *defchar, int *used_default);#endif#if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8)STBIDEF int stbi_convert_wchar_to_utf8(char *buffer, size_t bufferlen, const wchar_t* input){return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, (int) bufferlen, NULL, NULL);}#endifstatic FILE *stbi__fopen(char const *filename, char const *mode){ FILE *f;#if defined(_MSC_VER) && defined(STBI_WINDOWS_UTF8) wchar_t wMode[64]; wchar_t wFilename[1024];if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, sizeof(wFilename)))return 0;if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode)))return 0;#if _MSC_VER >= 1400
if (0 != _wfopen_s(&f, wFilename, wMode))
f = 0;
#else
f = _wfopen(wFilename, wMode);
#endif
if (0 != fopen_s(&f, filename, mode))
f=0;
#else
f = fopen(filename, mode);
#endif
return f;
}
{
FILE *f = stbi__fopen(filename, rb);
unsigned char *result;
if (!f) return stbi__errpuc(cant fopen, Unable to open file);
result = stbi_load_from_file(f,x,y,comp,req_comp);
fclose(f);
return result;
}
{
unsigned char *result;
stbi__context s;
stbi__start_file(&s,f);
result = stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp);
if (result) {
// need to unget all the characters in the IO buffer
fseek(f, (int) (s.img_buffer_end s.img_buffer), SEEK_CUR);
}
return result;
}
{
stbi__uint16 *result;
stbi__context s;
stbi__start_file(&s,f);
result = stbi__load_and_postprocess_16bit(&s,x,y,comp,req_comp);
if (result) {
// need to unget all the characters in the IO buffer
fseek(f, (int) (s.img_buffer_end s.img_buffer), SEEK_CUR);
}
return result;
}
{
FILE *f = stbi__fopen(filename, rb);
stbi__uint16 *result;
if (!f) return (stbi_us *) stbi__errpuc(cant fopen, Unable to open file);
result = stbi_load_from_file_16(f,x,y,comp,req_comp);
fclose(f);
return result;
}
{
stbi__context s;
stbi__start_mem(&s,buffer,len);
return stbi__load_and_postprocess_16bit(&s,x,y,channels_in_file,desired_channels);
}
{
stbi__context s;
stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user);
return stbi__load_and_postprocess_16bit(&s,x,y,channels_in_file,desired_channels);
}
{
stbi__context s;
stbi__start_mem(&s,buffer,len);
return stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp);
}
{
stbi__context s;
stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user);
return stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp);
}
STBIDEF stbi_uc *stbi_load_gif_from_memory(stbi_uc const *buffer, int len, int **delays, int *x, int *y, int *z, int *comp, int req_comp)
{
unsigned char *result;
stbi__context s;
stbi__start_mem(&s,buffer,len);
if (stbi__vertically_flip_on_load) {
stbi__vertical_flip_slices( result, *x, *y, *z, *comp );
}
}
#endif
static float *stbi__loadf_main(stbi__context *s, int *x, int *y, int *comp, int req_comp)
{
unsigned char *data;
#ifndef STBI_NO_HDR
if (stbi__hdr_test(s)) {
stbi__result_info ri;
float *hdr_data = stbi__hdr_load(s,x,y,comp,req_comp, &ri);
if (hdr_data)
stbi__float_postprocess(hdr_data,x,y,comp,req_comp);
return hdr_data;
}
#endif
data = stbi__load_and_postprocess_8bit(s, x, y, comp, req_comp);
if (data)
return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp);
return stbi__errpf(unknown image type, Image not of any known type, or corrupt);
}
{
stbi__context s;
stbi__start_mem(&s,buffer,len);
return stbi__loadf_main(&s,x,y,comp,req_comp);
}
{
stbi__context s;
stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user);
return stbi__loadf_main(&s,x,y,comp,req_comp);
}
STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp)
{
float *result;
FILE *f = stbi__fopen(filename, rb);
if (!f) return stbi__errpf(cant fopen, Unable to open file);
result = stbi_loadf_from_file(f,x,y,comp,req_comp);
fclose(f);
return result;
}
{
stbi__context s;
stbi__start_file(&s,f);
return stbi__loadf_main(&s,x,y,comp,req_comp);
}
#endif // !STBI_NO_STDIO
// defined, for API simplicity; if STBI_NO_LINEAR is defined, it always
// reports false!
{
#ifndef STBI_NO_HDR
stbi__context s;
stbi__start_mem(&s,buffer,len);
return stbi__hdr_test(&s);
#else
STBI_NOTUSED(buffer);
STBI_NOTUSED(len);
return 0;
#endif
}
STBIDEF intstbi_is_hdr(char const *filename)
{
FILE *f = stbi__fopen(filename, rb);
int result=0;
if (f) {
result = stbi_is_hdr_from_file(f);
fclose(f);
}
return result;
}
{
#ifndef STBI_NO_HDR
long pos = ftell(f);
int res;
stbi__context s;
stbi__start_file(&s,f);
res = stbi__hdr_test(&s);
fseek(f, pos, SEEK_SET);
return res;
#else
STBI_NOTUSED(f);
return 0;
#endif
}
#endif // !STBI_NO_STDIO
{
#ifndef STBI_NO_HDR
stbi__context s;
stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user);
return stbi__hdr_test(&s);
#else
STBI_NOTUSED(clbk);
STBI_NOTUSED(user);
return 0;
#endif
}
static float stbi__l2h_gamma=2.2f, stbi__l2h_scale=1.0f;
STBIDEF void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; }
#endif
STBIDEF void stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1/scale; }
//
// Common code used by all image loaders
//
{
STBI__SCAN_load=0,
STBI__SCAN_type,
STBI__SCAN_header
};
{
int n = (s->io.read)(s->io_user_data,(char*)s->buffer_start,s->buflen);
s->callback_already_read += (int) (s->img_buffer s->img_buffer_original);
if (n == 0) {
// at end of file, treat same as if from memory, but need to handle case
// where s->img_buffer isnt pointing to safe memory, e.g. 0-byte file
s->read_from_callbacks = 0;
s->img_buffer = s->buffer_start;
s->img_buffer_end = s->buffer_start+1;
*s->img_buffer = 0;
} else {
s->img_buffer = s->buffer_start;
s->img_buffer_end = s->buffer_start + n;
}
}
{
if (s->img_buffer < s->img_buffer_end)
return *s->img_buffer++;
if (s->read_from_callbacks) {
stbi__refill_buffer(s);
return *s->img_buffer++;
}
return 0;
}
// nothing
#else
stbi_inline static int stbi__at_eof(stbi__context *s)
{
if (s->io.read) {
if (!(s->io.eof)(s->io_user_data)) return 0;
// if feof() is true, check if buffer = end
// special case: weve only got the special 0 character at the end
if (s->read_from_callbacks == 0) return 1;
}
}
#endif
// nothing
#else
static void stbi__skip(stbi__context *s, int n)
{
if (n == 0) return;// already there!
if (n < 0) {s->img_buffer = s->img_buffer_end;
return;
}
if (s->io.read) {
int blen = (int) (s->img_buffer_end s->img_buffer);
if (blen < n) { s->img_buffer = s->img_buffer_end;
(s->io.skip)(s->io_user_data, n blen);
return;
}
}
s->img_buffer += n;
}
#endif
// nothing
#else
static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n)
{
if (s->io.read) {
int blen = (int) (s->img_buffer_end s->img_buffer);
if (blen < n) { int res, count; memcpy(buffer, s->img_buffer, blen);
res = (count == (n-blen));
s->img_buffer = s->img_buffer_end;
return res;
}
}
memcpy(buffer, s->img_buffer, n);
s->img_buffer += n;
return 1;
} else
return 0;
}
#endif
// nothing
#else
static int stbi__get16be(stbi__context *s)
{
int z = stbi__get8(s);
return (z << 8) + stbi__get8(s);}#endif#if defined(STBI_NO_PNG) && defined(STBI_NO_PSD) && defined(STBI_NO_PIC)// nothing#elsestatic stbi__uint32 stbi__get32be(stbi__context *s){ stbi__uint32 z = stbi__get16be(s); return (z << 16) + stbi__get16be(s);}#endif#if defined(STBI_NO_BMP) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF)// nothing#elsestatic int stbi__get16le(stbi__context *s){ int z = stbi__get8(s); return z + (stbi__get8(s) << 8);}#endif#ifndef STBI_NO_BMPstatic stbi__uint32 stbi__get32le(stbi__context *s){ stbi__uint32 z = stbi__get16le(s); return z + (stbi__get16le(s) << 16);}#endif#define STBI__BYTECAST(x)((stbi_uc) ((x) & 255))// truncate int to byte without warnings#if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM)// nothing#else//////////////////////////////////////////////////////////////////////////////////generic converter from built-in img_n to req_comp//individual types do this automatically as much as possible (e.g. jpeg//does all cases internally since it needs to colorspace convert anyway,//and it never has alpha, so very few cases ). png can automatically//interleave an alpha=255 channel, but falls back to this for other cases////assume data buffer is malloced, so malloc a new one and free that one//only failure mode is malloc failingstatic stbi_uc stbi__compute_y(int r, int g, int b){ return (stbi_uc) (((r*77) + (g*150) +(29*b)) >> 8);
}
#endif
// nothing
#else
static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y)
{
int i,j;
unsigned char *good;
STBI_ASSERT(req_comp >= 1 && req_comp <= 4); good = (unsigned char *) stbi__malloc_mad3(req_comp, x, y, 0); if (good == NULL) {STBI_FREE(data);return stbi__errpuc(“outofmem”, “Out of memory”); } for (j=0; j < (int) y; ++j) {unsigned char *src= data + j * x * img_n ;unsigned char *dest = good + j * x * req_comp;#define STBI__COMBO(a,b)((a)*8+(b))#define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; i, src += a, dest += b)
// convert source image with img_n components to one with req_comp components;
// avoid switch per pixel, so use switch per scanline and massive macros
switch (STBI__COMBO(img_n, req_comp)) {
STBI__CASE(1,2) { dest[0]=src[0]; dest[1]=255; } break;
STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0];} break;
STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=255; } break;
STBI__CASE(2,1) { dest[0]=src[0];} break;
STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0];} break;
STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=src[1];} break;
STBI__CASE(3,4) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2];dest[3]=255;} break;
STBI__CASE(3,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break;
STBI__CASE(3,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); dest[1] = 255;} break;
STBI__CASE(4,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); } break;
STBI__CASE(4,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]); dest[1] = src[3]; } break;
STBI__CASE(4,3) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2];} break;
default: STBI_ASSERT(0); STBI_FREE(data); STBI_FREE(good); return stbi__errpuc(unsupported, Unsupported format conversion);
}
#undef STBI__CASE
}
return good;
}
#endif
// nothing
#else
static stbi__uint16 stbi__compute_y_16(int r, int g, int b)
{
return (stbi__uint16) (((r*77) + (g*150) +(29*b)) >> 8);
}
#endif
// nothing
#else
static stbi__uint16 *stbi__convert_format16(stbi__uint16 *data, int img_n, int req_comp, unsigned int x, unsigned int y)
{
int i,j;
stbi__uint16 *good;
STBI_ASSERT(req_comp >= 1 && req_comp <= 4); good = (stbi__uint16 *) stbi__malloc(req_comp * x * y * 2); if (good == NULL) {STBI_FREE(data);return (stbi__uint16 *) stbi__errpuc(“outofmem”, “Out of memory”); } for (j=0; j < (int) y; ++j) {stbi__uint16 *src= data + j * x * img_n ;stbi__uint16 *dest = good + j * x * req_comp;#define STBI__COMBO(a,b)((a)*8+(b))#define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; i, src += a, dest += b)
// convert source image with img_n components to one with req_comp components;
// avoid switch per pixel, so use switch per scanline and massive macros
switch (STBI__COMBO(img_n, req_comp)) {
STBI__CASE(1,2) { dest[0]=src[0]; dest[1]=0xffff; } break;
STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0]; } break;
STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=0xffff; } break;
STBI__CASE(2,1) { dest[0]=src[0]; } break;
STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0]; } break;
STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0]; dest[3]=src[1]; } break;
STBI__CASE(3,4) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2];dest[3]=0xffff;} break;
STBI__CASE(3,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break;
STBI__CASE(3,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); dest[1] = 0xffff; } break;
STBI__CASE(4,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); } break;
STBI__CASE(4,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]); dest[1] = src[3]; } break;
STBI__CASE(4,3) { dest[0]=src[0];dest[1]=src[1];dest[2]=src[2]; } break;
default: STBI_ASSERT(0); STBI_FREE(data); STBI_FREE(good); return (stbi__uint16*) stbi__errpuc(unsupported, Unsupported format conversion);
}
#undef STBI__CASE
}
return good;
}
#endif
static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp)
{
int i,k,n;
float *output;
if (!data) return NULL;
output = (float *) stbi__malloc_mad4(x, y, comp, sizeof(float), 0);
if (output == NULL) { STBI_FREE(data); return stbi__errpf(outofmem, Out of memory); }
// compute number of non-alpha components
if (comp & 1) n = comp; else n = comp-1;
for (i=0; i < x*y; ++i) {for (k=0; k < n; ++k) { output[i*comp + k] = (float) (pow(data[i*comp+k]/255.0f, stbi__l2h_gamma) * stbi__l2h_scale);} } if (n < comp) {for (i=0; i < x*y; ++i) { output[i*comp + n] = data[i*comp + n]/255.0f;} } STBI_FREE(data); return output;}#endif#ifndef STBI_NO_HDR#define stbi__float2int(x) ((int) (x))static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp){ int i,k,n; stbi_uc *output; if (!data) return NULL; output = (stbi_uc *) stbi__malloc_mad3(x, y, comp, 0); if (output == NULL) { STBI_FREE(data); return stbi__errpuc(“outofmem”, “Out of memory”); } // compute number of non-alpha components if (comp & 1) n = comp; else n = comp-1; for (i=0; i < x*y; ++i) {for (k=0; k < n; ++k) { float z = (float) pow(data[i*comp+k]*stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255;
output[i*comp + k] = (stbi_uc) stbi__float2int(z);
}
if (k < comp) { float z = data[i*comp+k] * 255 + 0.5f; if (z < 0) z = 0; if (z > 255) z = 255;
output[i*comp + k] = (stbi_uc) stbi__float2int(z);
}
}
STBI_FREE(data);
return output;
}
#endif
//
//baseline JPEG/JFIF decoder
//
//simple implementation
// doesnt support delayed output of y-dimension
// simple interface (only one output format: 8-bit interleaved RGB)
// doesnt try to recover corrupt jpegs
// doesnt allow partial loading, loading multiple at once
// still fast on x86 (copying globals into locals doesnt help x86)
// allocates lots of intermediate memory (full size of all components)
// non-interleaved case requires this anyway
// allows good upsampling (see next)
//high-quality
// upsampled channels are bilinearly interpolated, even across blocks
// quality integer IDCT derived from IJGs slow
//performance
// fast huffman; reasonable integer IDCT
// some SIMD kernels for common paths on targets with SSE2/NEON
// uses a lot of intermediate memory, could cache poorly
#define FAST_BITS 9// larger handles more cases; smaller stomps less cache
{
stbi_ucfast[1 << FAST_BITS]; // weirdly, repacking this into AoS is a 10% speed loss, instead of a win stbi__uint16 code[256]; stbi_ucvalues[256]; stbi_ucsize[257]; unsigned int maxcode[18]; intdelta[17]; // old ‘firstsymbol’ – old ‘firstcode’} stbi__huffman;typedef struct{ stbi__context *s; stbi__huffman huff_dc[4]; stbi__huffman huff_ac[4]; stbi__uint16 dequant[4][64]; stbi__int16 fast_ac[4][1 << FAST_BITS];// sizes for components, interleaved MCUs int img_h_max, img_v_max; int img_mcu_x, img_mcu_y; int img_mcu_w, img_mcu_h;// definition of jpeg image component struct {int id;int h,v;int tq;int hd,ha;int dc_pred;int x,y,w2,h2;stbi_uc *data;void *raw_data, *raw_coeff;stbi_uc *linebuf;short *coeff; // progressive onlyintcoeff_w, coeff_h; // number of 8×8 coefficient blocks } img_comp[4]; stbi__uint32 code_buffer; // jpeg entropy-coded buffer intcode_bits; // number of valid bits unsigned charmarker;// marker seen while filling entropy buffer intnomore;// flag if we saw a marker so must stop intprogressive; intspec_start; intspec_end; intsucc_high; intsucc_low; inteob_run; intjfif; intapp14_color_transform; // Adobe APP14 tag intrgb; int scan_n, order[4]; int restart_interval, todo;// kernels void (*idct_block_kernel)(stbi_uc *out, int out_stride, short data[64]); void (*YCbCr_to_RGB_kernel)(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step); stbi_uc *(*resample_row_hv_2_kernel)(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs);} stbi__jpeg;static int stbi__build_huffman(stbi__huffman *h, int *count){ int i,j,k=0; unsigned int code; // build size list for each symbol (from JPEG spec) for (i=0; i < 16; ++i)for (j=0; j < count[i]; ++j) h->size[k++] = (stbi_uc) (i+1);
h->size[k] = 0;
code = 0;
k = 0;
for(j=1; j <= 16; ++j) {// compute delta to add to code to compute symbol idh->delta[j] = k code;
if (h->size[k] == j) {
while (h->size[k] == j)
h->code[k++] = (stbi__uint16) (code++);
if (code-1 >= (1u << j)) return stbi__err(“bad code lengths”,”Corrupt JPEG”);}// compute largest code + 1 for this size, preshifted as needed laterh->maxcode[j] = code << (16-j);code <<= 1; } h->maxcode[j] = 0xffffffff;
memset(h->fast, 255, 1 << FAST_BITS); for (i=0; i < k; ++i) {int s = h->size[i];
if (s <= FAST_BITS) { int c = h->code[i] << (FAST_BITS-s); int m = 1 << (FAST_BITS-s); for (j=0; j < m; ++j) {h->fast[c+j] = (stbi_uc) i;
}
}
}
return 1;
}
// one go.
static void stbi__build_fast_ac(stbi__int16 *fast_ac, stbi__huffman *h)
{
int i;
for (i=0; i < (1 << FAST_BITS); ++i) {stbi_uc fast = h->fast[i];
fast_ac[i] = 0;
if (fast < 255) { int rs = h->values[fast];
int run = (rs >> 4) & 15;
int magbits = rs & 15;
int len = h->size[fast];
int m = 1 << (magbits – 1);if (k < m) k += (~0U << magbits) + 1;// if the result is small enough, we can fit it in fast_ac tableif (k >= -128 && k <= 127) fast_ac[i] = (stbi__int16) ((k * 256) + (run * 16) + (len + magbits)); }} }}static void stbi__grow_buffer_unsafe(stbi__jpeg *j){ do {unsigned int b = j->nomore ? 0 : stbi__get8(j->s);
if (b == 0xff) {
int c = stbi__get8(j->s);
while (c == 0xff) c = stbi__get8(j->s); // consume fill bytes
if (c != 0) {
j->marker = (unsigned char) c;
j->nomore = 1;
return;
}
}
j->code_buffer |= b << (24 – j->code_bits);
j->code_bits += 8;
} while (j->code_bits <= 24);}// (1 << n) – 1static const stbi__uint32 stbi__bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535};// decode a jpeg huffman value from the bitstreamstbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg *j, stbi__huffman *h){ unsigned int temp; int c,k; if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); // look at the top FAST_BITS and determine what symbol ID it is, // if the code is <= FAST_BITS c = (j->code_buffer >> (32 FAST_BITS)) & ((1 << FAST_BITS)-1); k = h->fast[c];
if (k < 255) {int s = h->size[k];
if (s > j->code_bits)
return -1;
j->code_buffer <<= s;j->code_bits -= s;
return h->values[k];
}
// valid, then test against maxcode. To speed this up, weve
// preshifted maxcode left so that it has (16-k) 0s at the
// end; in other words, regardless of the number of bits, it
// wants to be compared against something shifted to have 16;
// that way we dont need to shift inside the loop.
temp = j->code_buffer >> 16;
for (k=FAST_BITS+1 ; ; ++k)
if (temp < h->maxcode[k])
break;
if (k == 17) {
// error! code not found
j->code_bits -= 16;
return -1;
}
return -1;
c = ((j->code_buffer >> (32 k)) & stbi__bmask[k]) + h->delta[k];
STBI_ASSERT((((j->code_buffer) >> (32 h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]);
j->code_bits -= k;
j->code_buffer <<= k; return h->values[c];
}
k = stbi_lrot(j->code_buffer, n);
if (n < 0 || n >= (int) (sizeof(stbi__bmask)/sizeof(*stbi__bmask))) return 0;
j->code_buffer = k & ~stbi__bmask[n];
k &= stbi__bmask[n];
j->code_bits -= n;
return k + (stbi__jbias[n] & ~sgn);
}
stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg *j, int n)
{
unsigned int k;
if (j->code_bits < n) stbi__grow_buffer_unsafe(j); k = stbi_lrot(j->code_buffer, n);
j->code_buffer = k & ~stbi__bmask[n];
k &= stbi__bmask[n];
j->code_bits -= n;
return k;
}
{
unsigned int k;
if (j->code_bits < 1) stbi__grow_buffer_unsafe(j); k = j->code_buffer;
j->code_buffer <<= 1; –j->code_bits;
return k & 0x80000000;
}
// where does it appear in the 88 matrix coded as row-major?
static const stbi_uc stbi__jpeg_dezigzag[64+15] =
{
0,1,8, 16,9,2,3, 10,
17, 24, 32, 25, 18, 11,4,5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13,6,7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
// let corrupt input sample past end
63, 63, 63, 63, 63, 63, 63, 63,
63, 63, 63, 63, 63, 63, 63
};
static int stbi__jpeg_decode_block(stbi__jpeg *j, short data[64], stbi__huffman *hdc, stbi__huffman *hac, stbi__int16 *fac, int b, stbi__uint16 *dequant)
{
int diff,dc,k;
int t;
j->img_comp[b].dc_pred = dc;
data[0] = (short) (dc * dequant[0]);
k = 1;
do {
unsigned int zig;
int c,r,s;
if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);c = (j->code_buffer >> (32 FAST_BITS)) & ((1 << FAST_BITS)-1);r = fac[c];if (r) { // fast-AC path k += (r >> 4) & 15; // run
s = r & 15; // combined length
j->code_buffer <<= s; j->code_bits -= s;
// decode into unzigzagd location
zig = stbi__jpeg_dezigzag[k++];
data[zig] = (short) ((r >> 8) * dequant[zig]);
} else {
int rs = stbi__jpeg_huff_decode(j, hac);
if (rs < 0) return stbi__err(“bad huffman code”,”Corrupt JPEG”); s = rs & 15; r = rs >> 4;
if (s == 0) {
if (rs != 0xf0) break; // end block
k += 16;
} else {
k += r;
// decode into unzigzagd location
zig = stbi__jpeg_dezigzag[k++];
data[zig] = (short) (stbi__extend_receive(j,s) * dequant[zig]);
}
}
} while (k < 64); return 1;}static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg *j, short data[64], stbi__huffman *hdc, int b){ int diff,dc; int t; if (j->spec_end != 0) return stbi__err(cant merge dc and ac, Corrupt JPEG);
// first scan for DC coefficient, must be first
memset(data,0,64*sizeof(data[0])); // 0 all the ac values now
t = stbi__jpeg_huff_decode(j, hdc);
if (t == -1) return stbi__err(cant merge dc and ac, Corrupt JPEG);
diff = t ? stbi__extend_receive(j, t) : 0;
j->img_comp[b].dc_pred = dc;
data[0] = (short) (dc << j->succ_low);
} else {
// refinement scan for DC coefficient
if (stbi__jpeg_get_bit(j))
data[0] += (short) (1 << j->succ_low);
}
return 1;
}
// and only de-zigzag when dequantizing
static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg *j, short data[64], stbi__huffman *hac, stbi__int16 *fac)
{
int k;
if (j->spec_start == 0) return stbi__err(cant merge dc and ac, Corrupt JPEG);
int shift = j->succ_low;
j->eob_run;
return 1;
}
do {
unsigned int zig;
int c,r,s;
if (j->code_bits < 16) stbi__grow_buffer_unsafe(j); c = (j->code_buffer >> (32 FAST_BITS)) & ((1 << FAST_BITS)-1); r = fac[c]; if (r) { // fast-AC pathk += (r >> 4) & 15; // run
s = r & 15; // combined length
j->code_buffer <<= s;j->code_bits -= s;
zig = stbi__jpeg_dezigzag[k++];
data[zig] = (short) ((r >> 8) << shift); } else {int rs = stbi__jpeg_huff_decode(j, hac);if (rs < 0) return stbi__err(“bad huffman code”,”Corrupt JPEG”);s = rs & 15;r = rs >> 4;
if (s == 0) {
if (r < 15) {j->eob_run = (1 << r);if (r) j->eob_run += stbi__jpeg_get_bits(j, r);
j->eob_run;
break;
}
k += 16;
} else {
k += r;
zig = stbi__jpeg_dezigzag[k++];
data[zig] = (short) (stbi__extend_receive(j,s) << shift);} }} while (k <= j->spec_end);
} else {
// refinement scan for these AC coefficients
j->eob_run;
for (k = j->spec_start; k <= j->spec_end; ++k) {
short *p = &data[stbi__jpeg_dezigzag[k]];
if (*p != 0)
if (stbi__jpeg_get_bit(j))
if ((*p & bit)==0) {
if (*p > 0)
*p += bit;
else
*p -= bit;
}
}
} else {
k = j->spec_start;
do {
int r,s;
int rs = stbi__jpeg_huff_decode(j, hac); // @OPTIMIZE see if we can use the fast path here, advance-by-r is so slow, eh
if (rs < 0) return stbi__err(“bad huffman code”,”Corrupt JPEG”);s = rs & 15;r = rs >> 4;
if (s == 0) {
if (r < 15) {j->eob_run = (1 << r) – 1;if (r) j->eob_run += stbi__jpeg_get_bits(j, r);
r = 64; // force end of block
} else {
// r=15 s=0 should write 16 0s, so we just do
// a run of 15 0s and then write s (which is 0),
// so we dont have to do anything special here
}
} else {
if (s != 1) return stbi__err(bad huffman code, Corrupt JPEG);
// sign bit
if (stbi__jpeg_get_bit(j))
s = bit;
else
s = -bit;
}
while (k <= j->spec_end) {
short *p = &data[stbi__jpeg_dezigzag[k++]];
if (*p != 0) {
if (stbi__jpeg_get_bit(j))
if ((*p & bit)==0) {
if (*p > 0)
*p += bit;
else
*p -= bit;
}
} else {
if (r == 0) {
*p = (short) s;
break;
}
r;
}
}
} while (k <= j->spec_end);
}
}
return 1;
}
stbi_inline static stbi_uc stbi__clamp(int x)
{
// trick to use a single test to catch both cases
if ((unsigned int) x > 255) {
if (x < 0) return 0;if (x > 255) return 255;
}
return (stbi_uc) x;
}
#define stbi__fsh(x)((x) * 4096)
#define STBI__IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7)
int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3;
p2 = s2;
p3 = s6;
p1 = (p2+p3) * stbi__f2f(0.5411961f);
t2 = p1 + p3*stbi__f2f(-1.847759065f);
t3 = p1 + p2*stbi__f2f( 0.765366865f);
p2 = s0;
p3 = s4;
t0 = stbi__fsh(p2+p3);
t1 = stbi__fsh(p2-p3);
x0 = t0+t3;
x3 = t0-t3;
x1 = t1+t2;
x2 = t1-t2;
t0 = s7;
t1 = s5;
t2 = s3;
t3 = s1;
p3 = t0+t2;
p4 = t1+t3;
p1 = t0+t3;
p2 = t1+t2;
p5 = (p3+p4)*stbi__f2f( 1.175875602f);
t0 = t0*stbi__f2f( 0.298631336f);
t1 = t1*stbi__f2f( 2.053119869f);
t2 = t2*stbi__f2f( 3.072711026f);
t3 = t3*stbi__f2f( 1.501321110f);
p1 = p5 + p1*stbi__f2f(-0.899976223f);
p2 = p5 + p2*stbi__f2f(-2.562915447f);
p3 = p3*stbi__f2f(-1.961570560f);
p4 = p4*stbi__f2f(-0.390180644f);
t3 += p1+p4;
t2 += p2+p3;
t1 += p2+p4;
t0 += p1+p3;
{
int i,val[64],*v=val;
stbi_uc *o;
short *d = data;
for (i=0; i < 8; ++i,++d, ++v) {// if all zeroes, shortcut — this avoids dequantizing 0s and IDCTingif (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0 && d[40]==0 && d[48]==0 && d[56]==0) { //no shortcut 0 seconds //(1|2|3|4|5|6|7)==00 seconds //all separate -0.047 seconds //1 && 2|3 && 4|5 && 6|7:-0.047 seconds int dcterm = d[0]*4; v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm;} else { STBI__IDCT_1D(d[ 0],d[ 8],d[16],d[24],d[32],d[40],d[48],d[56]) // constants scaled things up by 1<<12; let’s bring them back // down, but keep 2 extra bits of precision x0 += 512; x1 += 512; x2 += 512; x3 += 512; v[ 0] = (x0+t3) >> 10;
v[56] = (x0-t3) >> 10;
v[ 8] = (x1+t2) >> 10;
v[48] = (x1-t2) >> 10;
v[16] = (x2+t1) >> 10;
v[40] = (x2-t1) >> 10;
v[24] = (x3+t0) >> 10;
v[32] = (x3-t0) >> 10;
}
}
o[7] = stbi__clamp((x0-t3) >> 17);
o[1] = stbi__clamp((x1+t2) >> 17);
o[6] = stbi__clamp((x1-t2) >> 17);
o[2] = stbi__clamp((x2+t1) >> 17);
o[5] = stbi__clamp((x2-t1) >> 17);
o[3] = stbi__clamp((x3+t0) >> 17);
o[4] = stbi__clamp((x3-t0) >> 17);
}
}
// sse2 integer IDCT. not the fastest possible implementation but it
// produces bit-identical results to the generic C version so its
// fully transparent.
static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
{
// This is constructed to match our regular (generic) integer IDCT exactly.
__m128i row0, row1, row2, row3, row4, row5, row6, row7;
__m128i tmp;
#define dct_const(x,y)_mm_setr_epi16((x),(y),(x),(y),(x),(y),(x),(y))
// out(1) = c1[even]*x + c1[odd]*y
#define dct_rot(out0,out1, x,y,c0,c1)
__m128i c0##lo = _mm_unpacklo_epi16((x),(y));
__m128i c0##hi = _mm_unpackhi_epi16((x),(y));
__m128i out0##_l = _mm_madd_epi16(c0##lo, c0);
__m128i out0##_h = _mm_madd_epi16(c0##hi, c0);
__m128i out1##_l = _mm_madd_epi16(c0##lo, c1);
__m128i out1##_h = _mm_madd_epi16(c0##hi, c1)
x = stbi__get8(j->s);
if (x != 0xff) return STBI__MARKER_none;
while (x == 0xff)
x = stbi__get8(j->s); // consume repeated 0xff fill bytes
return x;
}
// of the components is specified by order[]
#define STBI__RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7)// after a restart interval, stbi__jpeg_reset the entropy decoder and// the dc predictionstatic void stbi__jpeg_reset(stbi__jpeg *j){ j->code_bits = 0;
j->code_buffer = 0;
j->nomore = 0;
j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = j->img_comp[3].dc_pred = 0;
j->marker = STBI__MARKER_none;
j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff;
j->eob_run = 0;
// no more than 1<<31 MCUs if no restart_interal? that’s plenty safe, // since we don’t even allow 1<<30 pixels}static int stbi__parse_entropy_coded_data(stbi__jpeg *z){ stbi__jpeg_reset(z); if (!z->progressive) {
if (z->scan_n == 1) {
int i,j;
STBI_SIMD_ALIGN(short, data[64]);
int n = z->order[0];
// non-interleaved data, we just need to process one block at a time,
// in trivial scanline order
// number of blocks to do just depends on how many actual pixels this
// component has, independent of interleaved MCU blocking and such
int w = (z->img_comp[n].x+7) >> 3;
int h = (z->img_comp[n].y+7) >> 3;
for (j=0; j < h; ++j) {for (i=0; i < w; ++i) { int ha = z->img_comp[n].ha;
if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0;
z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data);
// every data block is an MCU, so countdown the restart interval
if (z->todo <= 0) {if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);// if it’s NOT a restart, then just bail, so we get corrupt data// rather than no dataif (!STBI__RESTART(z->marker)) return 1;
stbi__jpeg_reset(z);
}
}
}
return 1;
} else { // interleaved
int i,j,k,x,y;
STBI_SIMD_ALIGN(short, data[64]);
for (j=0; j < z->img_mcu_y; ++j) {
for (i=0; i < z->img_mcu_x; ++i) {
// scan an interleaved mcu process scan_n components in order
for (k=0; k < z->scan_n; ++k) {
int n = z->order[k];
// scan out an mcus worth of this component; thats just determined
// by the basic H and V specified for the component
for (y=0; y < z->img_comp[n].v; ++y) {
for (x=0; x < z->img_comp[n].h; ++x) {
int x2 = (i*z->img_comp[n].h + x)*8;
int y2 = (j*z->img_comp[n].v + y)*8;
int ha = z->img_comp[n].ha;
if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0;
z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data);
}
}
}
// after all interleaved components, thats an interleaved MCU,
// so now count down the restart interval
if (z->todo <= 0) {if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);if (!STBI__RESTART(z->marker)) return 1;
stbi__jpeg_reset(z);
}
}
}
return 1;
}
} else {
if (z->scan_n == 1) {
int i,j;
int n = z->order[0];
// non-interleaved data, we just need to process one block at a time,
// in trivial scanline order
// number of blocks to do just depends on how many actual pixels this
// component has, independent of interleaved MCU blocking and such
int w = (z->img_comp[n].x+7) >> 3;
int h = (z->img_comp[n].y+7) >> 3;
for (j=0; j < h; ++j) {for (i=0; i < w; ++i) { short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w);
if (z->spec_start == 0) {
if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n))
return 0;
} else {
int ha = z->img_comp[n].ha;
if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha]))
return 0;
}
// every data block is an MCU, so countdown the restart interval
if (z->todo <= 0) {if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);if (!STBI__RESTART(z->marker)) return 1;
stbi__jpeg_reset(z);
}
}
}
return 1;
} else { // interleaved
int i,j,k,x,y;
for (j=0; j < z->img_mcu_y; ++j) {
for (i=0; i < z->img_mcu_x; ++i) {
// scan an interleaved mcu process scan_n components in order
for (k=0; k < z->scan_n; ++k) {
int n = z->order[k];
// scan out an mcus worth of this component; thats just determined
// by the basic H and V specified for the component
for (y=0; y < z->img_comp[n].v; ++y) {
for (x=0; x < z->img_comp[n].h; ++x) {
int x2 = (i*z->img_comp[n].h + x);
int y2 = (j*z->img_comp[n].v + y);
short *data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w);
if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n))
return 0;
}
}
}
// after all interleaved components, thats an interleaved MCU,
// so now count down the restart interval
if (z->todo <= 0) {if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);if (!STBI__RESTART(z->marker)) return 1;
stbi__jpeg_reset(z);
}
}
}
return 1;
}
}
}
{
int i;
for (i=0; i < 64; ++i)data[i] *= dequant[i];}static void stbi__jpeg_finish(stbi__jpeg *z){ if (z->progressive) {
// dequantize and idct the data
int i,j,n;
for (n=0; n < z->s->img_n; ++n) {
int w = (z->img_comp[n].x+7) >> 3;
int h = (z->img_comp[n].y+7) >> 3;
for (j=0; j < h; ++j) {for (i=0; i < w; ++i) { short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w);
stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]);
z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data);
}
}
}
}
}
{
int L;
switch (m) {
case STBI__MARKER_none: // no marker found
return stbi__err(expected marker,Corrupt JPEG);
if (stbi__get16be(z->s) != 4) return stbi__err(bad DRI len,Corrupt JPEG);
z->restart_interval = stbi__get16be(z->s);
return 1;
L = stbi__get16be(z->s)-2;
while (L > 0) {
int q = stbi__get8(z->s);
int p = q >> 4, sixteen = (p != 0);
int t = q & 15,i;
if (p != 0 && p != 1) return stbi__err(bad DQT type,Corrupt JPEG);
if (t > 3) return stbi__err(bad DQT table,Corrupt JPEG);
L -= (sixteen ? 129 : 65);
}
return L==0;
L = stbi__get16be(z->s)-2;
while (L > 0) {
stbi_uc *v;
int sizes[16],i,n=0;
int q = stbi__get8(z->s);
int tc = q >> 4;
int th = q & 15;
if (tc > 1 || th > 3) return stbi__err(bad DHT header,Corrupt JPEG);
for (i=0; i < 16; ++i) { sizes[i] = stbi__get8(z->s);
n += sizes[i];
}
L -= 17;
if (tc == 0) {
if (!stbi__build_huffman(z->huff_dc+th, sizes)) return 0;
v = z->huff_dc[th].values;
} else {
if (!stbi__build_huffman(z->huff_ac+th, sizes)) return 0;
v = z->huff_ac[th].values;
}
for (i=0; i < n; ++i) v[i] = stbi__get8(z->s);
if (tc != 0)
stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th);
L -= n;
}
return L==0;
}
if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) {L = stbi__get16be(z->s);
if (L < 2) { if (m == 0xFE)return stbi__err(“bad COM len”,”Corrupt JPEG”); elsereturn stbi__err(“bad APP len”,”Corrupt JPEG”);}L -= 2;if (m == 0xE0 && L >= 5) { // JFIF APP0 segment
static const unsigned char tag[5] = {J,F,I,F, };
int ok = 1;
int i;
for (i=0; i < 5; ++i)if (stbi__get8(z->s) != tag[i])
ok = 0;
L -= 5;
if (ok)
z->jfif = 1;
} else if (m == 0xEE && L >= 12) { // Adobe APP14 segment
static const unsigned char tag[6] = {A,d,o,b,e, };
int ok = 1;
int i;
for (i=0; i < 6; ++i)if (stbi__get8(z->s) != tag[i])
ok = 0;
L -= 6;
if (ok) {
stbi__get8(z->s); // version
stbi__get16be(z->s); // flags0
stbi__get16be(z->s); // flags1
z->app14_color_transform = stbi__get8(z->s); // color transform
L -= 6;
}
}
return 1;
}
}
static int stbi__process_scan_header(stbi__jpeg *z)
{
int i;
int Ls = stbi__get16be(z->s);
z->scan_n = stbi__get8(z->s);
if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s->img_n) return stbi__err(bad SOS component count,Corrupt JPEG);
if (Ls != 6+2*z->scan_n) return stbi__err(bad SOS len,Corrupt JPEG);
for (i=0; i < z->scan_n; ++i) {
int id = stbi__get8(z->s), which;
int q = stbi__get8(z->s);
for (which = 0; which < z->s->img_n; ++which)
if (z->img_comp[which].id == id)
break;
if (which == z->s->img_n) return 0; // no match
z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return stbi__err(bad DC huff,Corrupt JPEG);
z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return stbi__err(bad AC huff,Corrupt JPEG);
z->order[i] = which;
}
int aa;
z->spec_start = stbi__get8(z->s);
z->spec_end = stbi__get8(z->s); // should be 63, but might be 0
aa = stbi__get8(z->s);
z->succ_high = (aa >> 4);
z->succ_low= (aa & 15);
if (z->progressive) {
if (z->spec_start > 63 || z->spec_end > 63|| z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13)
return stbi__err(bad SOS, Corrupt JPEG);
} else {
if (z->spec_start != 0) return stbi__err(bad SOS,Corrupt JPEG);
if (z->succ_high != 0 || z->succ_low != 0) return stbi__err(bad SOS,Corrupt JPEG);
z->spec_end = 63;
}
}
}
{
int i;
for (i=0; i < ncomp; ++i) {if (z->img_comp[i].raw_data) {
STBI_FREE(z->img_comp[i].raw_data);
z->img_comp[i].raw_data = NULL;
z->img_comp[i].data = NULL;
}
if (z->img_comp[i].raw_coeff) {
STBI_FREE(z->img_comp[i].raw_coeff);
z->img_comp[i].raw_coeff = 0;
z->img_comp[i].coeff = 0;
}
if (z->img_comp[i].linebuf) {
STBI_FREE(z->img_comp[i].linebuf);
z->img_comp[i].linebuf = NULL;
}
}
return why;
}
{
stbi__context *s = z->s;
int Lf,p,i,q, h_max=1,v_max=1,c;
Lf = stbi__get16be(s); if (Lf < 11) return stbi__err(“bad SOF len”,”Corrupt JPEG”); // JPEG p= stbi__get8(s);if (p != 8) return stbi__err(“only 8-bit”,”JPEG format not supported: 8-bit only”); // JPEG baseline s->img_y = stbi__get16be(s); if (s->img_y == 0) return stbi__err(no header height, JPEG format not supported: delayed height); // Legal, but we dont handle itbut neither does IJG
s->img_x = stbi__get16be(s); if (s->img_x == 0) return stbi__err(0 width,Corrupt JPEG); // JPEG requires
if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__err(too large,Very large image (corrupt?));
if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__err(too large,Very large image (corrupt?));
c = stbi__get8(s);
if (c != 3 && c != 1 && c != 4) return stbi__err(bad component count,Corrupt JPEG);
s->img_n = c;
for (i=0; i < c; ++i) {z->img_comp[i].data = NULL;
z->img_comp[i].linebuf = NULL;
}
for (i=0; i < s->img_n; ++i) {
static const unsigned char rgb[3] = { R, G, B };
z->img_comp[i].id = stbi__get8(s);
if (s->img_n == 3 && z->img_comp[i].id == rgb[i])
++z->rgb;
q = stbi__get8(s);
z->img_comp[i].h = (q >> 4);if (!z->img_comp[i].h || z->img_comp[i].h > 4) return stbi__err(bad H,Corrupt JPEG);
z->img_comp[i].v = q & 15;if (!z->img_comp[i].v || z->img_comp[i].v > 4) return stbi__err(bad V,Corrupt JPEG);
z->img_comp[i].tq = stbi__get8(s);if (z->img_comp[i].tq > 3) return stbi__err(bad TQ,Corrupt JPEG);
}
if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h;
if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v;
}
z->img_h_max = h_max;
z->img_v_max = v_max;
z->img_mcu_w = h_max * 8;
z->img_mcu_h = v_max * 8;
// these sizes cant be more than 17 bits
z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w;
z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h;
// number of effective pixels (e.g. for non-interleaved MCU)
z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max;
z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max;
// to simplify generation, well allocate enough memory to decode
// the bogus oversized data from using interleaved MCUs and their
// big blocks (e.g. a 1616 iMCU on an image of width 33); we wont
// discard the extra data until colorspace conversion
//
// img_mcu_x, img_mcu_y: <=17 bits; comp[i].h and .v are <=4 (checked earlier)// so these muls can’t overflow with 32-bit ints (which we require)z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8;
z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8;
z->img_comp[i].coeff = 0;
z->img_comp[i].raw_coeff = 0;
z->img_comp[i].linebuf = NULL;
z->img_comp[i].raw_data = stbi__malloc_mad2(z->img_comp[i].w2, z->img_comp[i].h2, 15);
if (z->img_comp[i].raw_data == NULL)
return stbi__free_jpeg_components(z, i+1, stbi__err(outofmem, Out of memory));
// align blocks for idct using mmx/sse
z->img_comp[i].data = (stbi_uc*) (((size_t) z->img_comp[i].raw_data + 15) & ~15);
if (z->progressive) {
// w2, h2 are multiples of 8 (see above)
z->img_comp[i].coeff_w = z->img_comp[i].w2 / 8;
z->img_comp[i].coeff_h = z->img_comp[i].h2 / 8;
z->img_comp[i].raw_coeff = stbi__malloc_mad3(z->img_comp[i].w2, z->img_comp[i].h2, sizeof(short), 15);
if (z->img_comp[i].raw_coeff == NULL)
return stbi__free_jpeg_components(z, i+1, stbi__err(outofmem, Out of memory));
z->img_comp[i].coeff = (short*) (((size_t) z->img_comp[i].raw_coeff + 15) & ~15);
}
}
}
#define stbi__DNL(x) ((x) == 0xdc)
#define stbi__SOI(x) ((x) == 0xd8)
#define stbi__EOI(x) ((x) == 0xd9)
#define stbi__SOF(x) ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2)
#define stbi__SOS(x) ((x) == 0xda)
{
int m;
z->jfif = 0;
z->app14_color_transform = -1; // valid values are 0,1,2
z->marker = STBI__MARKER_none; // initialize cached marker to empty
m = stbi__get_marker(z);
if (!stbi__SOI(m)) return stbi__err(no SOI,Corrupt JPEG);
if (scan == STBI__SCAN_type) return 1;
m = stbi__get_marker(z);
while (!stbi__SOF(m)) {
if (!stbi__process_marker(z,m)) return 0;
m = stbi__get_marker(z);
while (m == STBI__MARKER_none) {
// some files have extra padding after their blocks, so ok, well scan
if (stbi__at_eof(z->s)) return stbi__err(no SOF, Corrupt JPEG);
m = stbi__get_marker(z);
}
}
z->progressive = stbi__SOF_progressive(m);
if (!stbi__process_frame_header(z, scan)) return 0;
return 1;
}
static int stbi__decode_jpeg_image(stbi__jpeg *j)
{
int m;
for (m = 0; m < 4; m++) {j->img_comp[m].raw_data = NULL;
j->img_comp[m].raw_coeff = NULL;
}
j->restart_interval = 0;
if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) return 0;
m = stbi__get_marker(j);
while (!stbi__EOI(m)) {
if (stbi__SOS(m)) {
if (!stbi__process_scan_header(j)) return 0;
if (!stbi__parse_entropy_coded_data(j)) return 0;
if (j->marker == STBI__MARKER_none ) {
// handle 0s at the end of image data from IP Kamera 9060
while (!stbi__at_eof(j->s)) {
int x = stbi__get8(j->s);
if (x == 255) {
j->marker = stbi__get8(j->s);
break;
}
}
// if we reach eof without hitting a marker, stbi__get_marker() below will fail and well eventually return 0
}
} else if (stbi__DNL(m)) {
int Ld = stbi__get16be(j->s);
stbi__uint32 NL = stbi__get16be(j->s);
if (Ld != 4) return stbi__err(bad DNL len, Corrupt JPEG);
if (NL != j->s->img_y) return stbi__err(bad DNL height, Corrupt JPEG);
} else {
if (!stbi__process_marker(j, m)) return 0;
}
m = stbi__get_marker(j);
}
if (j->progressive)
stbi__jpeg_finish(j);
return 1;
}
int w, int hs);
{
STBI_NOTUSED(out);
STBI_NOTUSED(in_far);
STBI_NOTUSED(w);
STBI_NOTUSED(hs);
return in_near;
}
{
// need to generate two samples vertically for every one in input
int i;
STBI_NOTUSED(hs);
for (i=0; i < w; ++i)out[i] = stbi__div4(3*in_near[i] + in_far[i] + 2); return out;}static stbi_uc*stbi__resample_row_h_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs){ // need to generate two samples horizontally for every one in input int i; stbi_uc *input = in_near; if (w == 1) {// if only one sample, can’t do any interpolationout[0] = out[1] = input[0];return out; } out[0] = input[0]; out[1] = stbi__div4(input[0]*3 + input[1] + 2); for (i=1; i < w-1; ++i) {int n = 3*input[i]+2;out[i*2+0] = stbi__div4(n+input[i-1]);out[i*2+1] = stbi__div4(n+input[i+1]); } out[i*2+0] = stbi__div4(input[w-2]*3 + input[w-1] + 2); out[i*2+1] = input[w-1]; STBI_NOTUSED(in_far); STBI_NOTUSED(hs); return out;}#define stbi__div16(x) ((stbi_uc) ((x) >> 4))
{
// need to generate 22 samples for every one in input
int i,t0,t1;
if (w == 1) {
out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2);
return out;
}
out[0] = stbi__div4(t1+2);
for (i=1; i < w; ++i) {t0 = t1;t1 = 3*in_near[i]+in_far[i];out[i*2-1] = stbi__div16(3*t0 + t1 + 8);out[i*2] = stbi__div16(3*t1 + t0 + 8); } out[w*2-1] = stbi__div4(t1+2); STBI_NOTUSED(hs); return out;}#if defined(STBI_SSE2) || defined(STBI_NEON)static stbi_uc *stbi__resample_row_hv_2_simd(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs){ // need to generate 2×2 samples for every one in input int i=0,t0,t1; if (w == 1) {out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2);return out; } t1 = 3*in_near[0] + in_far[0]; // process groups of 8 pixels for as long as we can. // note we can’t handle the last pixel in a row in this loop // because we need to handle the filter boundary conditions. for (; i < ((w-1) & ~7); i += 8) {#if defined(STBI_SSE2)// load and perform the vertical filtering pass// this uses 3*x + y = 4*x + (y – x)__m128i zero= _mm_setzero_si128();__m128i farb= _mm_loadl_epi64((__m128i *) (in_far + i));__m128i nearb = _mm_loadl_epi64((__m128i *) (in_near + i));__m128i farw= _mm_unpacklo_epi8(farb, zero);__m128i nearw = _mm_unpacklo_epi8(nearb, zero);__m128i diff= _mm_sub_epi16(farw, nearw);__m128i nears = _mm_slli_epi16(nearw, 2);__m128i curr= _mm_add_epi16(nears, diff); // current row// horizontal filter works the same based on shifted vers of current// row. “prev” is current row shifted right by 1 pixel; we need to// insert the previous pixel value (from t1).// “next” is current row shifted left by 1 pixel, with first pixel// of next block of 8 pixels added in.__m128i prv0 = _mm_slli_si128(curr, 2);__m128i nxt0 = _mm_srli_si128(curr, 2);__m128i prev = _mm_insert_epi16(prv0, t1, 0);__m128i next = _mm_insert_epi16(nxt0, 3*in_near[i+8] + in_far[i+8], 7);// horizontal filter, polyphase implementation since it’s convenient:// even pixels = 3*cur + prev = cur*4 + (prev – cur)// oddpixels = 3*cur + next = cur*4 + (next – cur)// note the shared term.__m128i bias= _mm_set1_epi16(8);__m128i curs = _mm_slli_epi16(curr, 2);__m128i prvd = _mm_sub_epi16(prev, curr);__m128i nxtd = _mm_sub_epi16(next, curr);__m128i curb = _mm_add_epi16(curs, bias);__m128i even = _mm_add_epi16(prvd, curb);__m128i odd= _mm_add_epi16(nxtd, curb);// interleave even and odd pixels, then undo scaling.__m128i int0 = _mm_unpacklo_epi16(even, odd);__m128i int1 = _mm_unpackhi_epi16(even, odd);__m128i de0= _mm_srli_epi16(int0, 4);__m128i de1= _mm_srli_epi16(int1, 4);// pack and write output__m128i outv = _mm_packus_epi16(de0, de1);_mm_storeu_si128((__m128i *) (out + i*2), outv);#elif defined(STBI_NEON)// load and perform the vertical filtering pass// this uses 3*x + y = 4*x + (y – x)uint8x8_t farb= vld1_u8(in_far + i);uint8x8_t nearb = vld1_u8(in_near + i);int16x8_t diff= vreinterpretq_s16_u16(vsubl_u8(farb, nearb));int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2));int16x8_t curr= vaddq_s16(nears, diff); // current row// horizontal filter works the same based on shifted vers of current// row. “prev” is current row shifted right by 1 pixel; we need to// insert the previous pixel value (from t1).// “next” is current row shifted left by 1 pixel, with first pixel// of next block of 8 pixels added in.int16x8_t prv0 = vextq_s16(curr, curr, 7);int16x8_t nxt0 = vextq_s16(curr, curr, 1);int16x8_t prev = vsetq_lane_s16(t1, prv0, 0);int16x8_t next = vsetq_lane_s16(3*in_near[i+8] + in_far[i+8], nxt0, 7);// horizontal filter, polyphase implementation since it’s convenient:// even pixels = 3*cur + prev = cur*4 + (prev – cur)// oddpixels = 3*cur + next = cur*4 + (next – cur)// note the shared term.int16x8_t curs = vshlq_n_s16(curr, 2);int16x8_t prvd = vsubq_s16(prev, curr);int16x8_t nxtd = vsubq_s16(next, curr);int16x8_t even = vaddq_s16(curs, prvd);int16x8_t odd= vaddq_s16(curs, nxtd);// undo scaling and round, then store with even/odd phases interleaveduint8x8x2_t o;o.val[0] = vqrshrun_n_s16(even, 4);o.val[1] = vqrshrun_n_s16(odd,4);vst2_u8(out + i*2, o);#endif// “previous” value for next itert1 = 3*in_near[i+7] + in_far[i+7]; } t0 = t1; t1 = 3*in_near[i] + in_far[i]; out[i*2] = stbi__div16(3*t1 + t0 + 8); for (++i; i < w; ++i) {t0 = t1;t1 = 3*in_near[i]+in_far[i];out[i*2-1] = stbi__div16(3*t0 + t1 + 8);out[i*2] = stbi__div16(3*t1 + t0 + 8); } out[w*2-1] = stbi__div4(t1+2); STBI_NOTUSED(hs); return out;}#endifstatic stbi_uc *stbi__resample_row_generic(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs){ // resample with nearest-neighbor int i,j; STBI_NOTUSED(in_far); for (i=0; i < w; ++i)for (j=0; j < hs; ++j) out[i*hs+j] = in_near[i]; return out;}// this is a reduced-precision calculation of YCbCr-to-RGB introduced// to make sure the code produces the same results in both SIMD and scalar#define stbi__float2fixed(x)(((int) ((x) * 4096.0f + 0.5f)) << 8)static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step){ int i; for (i=0; i < count; ++i) {int y_fixed = (y[i] << 20) + (1<<19); // roundingint r,g,b;int cr = pcr[i] – 128;int cb = pcb[i] – 128;r = y_fixed +cr* stbi__float2fixed(1.40200f);g = y_fixed + (cr*-stbi__float2fixed(0.71414f)) + ((cb*-stbi__float2fixed(0.34414f)) & 0xffff0000);b = y_fixed + cb* stbi__float2fixed(1.77200f);r >>= 20;
g >>= 20;
b >>= 20;
if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; }if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; }if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; }out[0] = (stbi_uc)r;out[1] = (stbi_uc)g;out[2] = (stbi_uc)b;out[3] = 255;out += step; }}#if defined(STBI_SSE2) || defined(STBI_NEON)static void stbi__YCbCr_to_RGB_simd(stbi_uc *out, stbi_uc const *y, stbi_uc const *pcb, stbi_uc const *pcr, int count, int step){ int i = 0;#ifdef STBI_SSE2 // step == 3 is pretty ugly on the final interleave, and i’m not convinced // it’s useful in practice (you wouldn’t use it for textures, for example). // so just accelerate step == 4 case. if (step == 4) {// this is a fairly straightforward implementation and not super-optimized.__m128i signflip= _mm_set1_epi8(-0x80);__m128i cr_const0 = _mm_set1_epi16( (short) ( 1.40200f*4096.0f+0.5f));__m128i cr_const1 = _mm_set1_epi16( – (short) ( 0.71414f*4096.0f+0.5f));__m128i cb_const0 = _mm_set1_epi16( – (short) ( 0.34414f*4096.0f+0.5f));__m128i cb_const1 = _mm_set1_epi16( (short) ( 1.77200f*4096.0f+0.5f));__m128i y_bias = _mm_set1_epi8((char) (unsigned char) 128);__m128i xw = _mm_set1_epi16(255); // alpha channelfor (; i+7 < count; i += 8) { // load __m128i y_bytes = _mm_loadl_epi64((__m128i *) (y+i)); __m128i cr_bytes = _mm_loadl_epi64((__m128i *) (pcr+i)); __m128i cb_bytes = _mm_loadl_epi64((__m128i *) (pcb+i)); __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128 __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128 // unpack to short (and left-shift cr, cb by 8) __m128i yw= _mm_unpacklo_epi8(y_bias, y_bytes); __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased); __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased); // color transform __m128i yws = _mm_srli_epi16(yw, 4); __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw); __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw); __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1); __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1); __m128i rws = _mm_add_epi16(cr0, yws); __m128i gwt = _mm_add_epi16(cb0, yws); __m128i bws = _mm_add_epi16(yws, cb1); __m128i gws = _mm_add_epi16(gwt, cr1); // descale __m128i rw = _mm_srai_epi16(rws, 4); __m128i bw = _mm_srai_epi16(bws, 4); __m128i gw = _mm_srai_epi16(gws, 4); // back to byte, set up for transpose __m128i brb = _mm_packus_epi16(rw, bw); __m128i gxb = _mm_packus_epi16(gw, xw); // transpose to interleave channels __m128i t0 = _mm_unpacklo_epi8(brb, gxb); __m128i t1 = _mm_unpackhi_epi8(brb, gxb); __m128i o0 = _mm_unpacklo_epi16(t0, t1); __m128i o1 = _mm_unpackhi_epi16(t0, t1); // store _mm_storeu_si128((__m128i *) (out + 0), o0); _mm_storeu_si128((__m128i *) (out + 16), o1); out += 32;} }#endif#ifdef STBI_NEON // in this version, step=3 support would be easy to add. but is there demand? if (step == 4) {// this is a fairly straightforward implementation and not super-optimized.uint8x8_t signflip = vdup_n_u8(0x80);int16x8_t cr_const0 = vdupq_n_s16( (short) ( 1.40200f*4096.0f+0.5f));int16x8_t cr_const1 = vdupq_n_s16( – (short) ( 0.71414f*4096.0f+0.5f));int16x8_t cb_const0 = vdupq_n_s16( – (short) ( 0.34414f*4096.0f+0.5f));int16x8_t cb_const1 = vdupq_n_s16( (short) ( 1.77200f*4096.0f+0.5f));for (; i+7 < count; i += 8) { // load uint8x8_t y_bytes= vld1_u8(y + i); uint8x8_t cr_bytes = vld1_u8(pcr + i); uint8x8_t cb_bytes = vld1_u8(pcb + i); int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip)); int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip)); // expand to s16 int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4)); int16x8_t crw = vshll_n_s8(cr_biased, 7); int16x8_t cbw = vshll_n_s8(cb_biased, 7); // color transform int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0); int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0); int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1); int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1); int16x8_t rws = vaddq_s16(yws, cr0); int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1); int16x8_t bws = vaddq_s16(yws, cb1); // undo scaling, round, convert to byte uint8x8x4_t o; o.val[0] = vqrshrun_n_s16(rws, 4); o.val[1] = vqrshrun_n_s16(gws, 4); o.val[2] = vqrshrun_n_s16(bws, 4); o.val[3] = vdup_n_u8(255); // store, interleaving r/g/b/a vst4_u8(out, o); out += 8*4;} }#endif for (; i < count; ++i) {int y_fixed = (y[i] << 20) + (1<<19); // roundingint r,g,b;int cr = pcr[i] – 128;int cb = pcb[i] – 128;r = y_fixed + cr* stbi__float2fixed(1.40200f);g = y_fixed + cr*-stbi__float2fixed(0.71414f) + ((cb*-stbi__float2fixed(0.34414f)) & 0xffff0000);b = y_fixed + cb* stbi__float2fixed(1.77200f);r >>= 20;
g >>= 20;
b >>= 20;
if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; }if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; }if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; }out[0] = (stbi_uc)r;out[1] = (stbi_uc)g;out[2] = (stbi_uc)b;out[3] = 255;out += step; }}#endif// set up the kernelsstatic void stbi__setup_jpeg(stbi__jpeg *j){ j->idct_block_kernel = stbi__idct_block;
j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row;
j->resample_row_hv_2_kernel = stbi__resample_row_hv_2;
if (stbi__sse2_available()) {
j->idct_block_kernel = stbi__idct_simd;
j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd;
j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd;
}
#endif
j->idct_block_kernel = stbi__idct_simd;
j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd;
j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd;
#endif
}
static void stbi__cleanup_jpeg(stbi__jpeg *j)
{
stbi__free_jpeg_components(j, j->s->img_n, 0);
}
{
resample_row_func resample;
stbi_uc *line0,*line1;
int hs,vs; // expansion factor in each axis
int w_lores; // horizontal pixels pre-expansion
int ystep; // how far through vertical expansion we are
int ypos;// which pre-expansion row were on
} stbi__resample;
static stbi_uc stbi__blinn_8x8(stbi_uc x, stbi_uc y)
{
unsigned int t = x*y + 128;
return (stbi_uc) ((t + (t >>8)) >> 8);
}
{
int n, decode_n, is_rgb;
z->s->img_n = 0; // make stbi__cleanup_jpeg safe
if (req_comp < 0 || req_comp > 4) return stbi__errpuc(bad req_comp, Internal error);
if (!stbi__decode_jpeg_image(z)) { stbi__cleanup_jpeg(z); return NULL; }
n = req_comp ? req_comp : z->s->img_n >= 3 ? 3 : 1;
{
int k;
unsigned int i,j;
stbi_uc *output;
stbi_uc *coutput[4] = { NULL, NULL, NULL, NULL };
if (!z->img_comp[k].linebuf) { stbi__cleanup_jpeg(z); return stbi__errpuc(outofmem, Out of memory); }
r->vs= z->img_v_max / z->img_comp[k].v;
r->ystep = r->vs >> 1;
r->w_lores = (z->s->img_x + r->hs-1) / r->hs;
r->ypos= 0;
r->line0 = r->line1 = z->img_comp[k].data;
else if (r->hs == 1 && r->vs == 2) r->resample = stbi__resample_row_v_2;
else if (r->hs == 2 && r->vs == 1) r->resample = stbi__resample_row_h_2;
else if (r->hs == 2 && r->vs == 2) r->resample = z->resample_row_hv_2_kernel;
else r->resample = stbi__resample_row_generic;
}
output = (stbi_uc *) stbi__malloc_mad3(n, z->s->img_x, z->s->img_y, 1);
if (!output) { stbi__cleanup_jpeg(z); return stbi__errpuc(outofmem, Out of memory); }
for (j=0; j < z->s->img_y; ++j) {
stbi_uc *out = output + n * z->s->img_x * j;
for (k=0; k < decode_n; ++k) {stbi__resample *r = &res_comp[k];int y_bot = r->ystep >= (r->vs >> 1);
coutput[k] = r->resample(z->img_comp[k].linebuf,
y_bot ? r->line1 : r->line0,
y_bot ? r->line0 : r->line1,
r->w_lores, r->hs);
if (++r->ystep >= r->vs) {
r->ystep = 0;
r->line0 = r->line1;
if (++r->ypos < z->img_comp[k].y)
r->line1 += z->img_comp[k].w2;
}
}
if (n >= 3) {
stbi_uc *y = coutput[0];
if (z->s->img_n == 3) {
if (is_rgb) {
for (i=0; i < z->s->img_x; ++i) {
out[0] = y[i];
out[1] = coutput[1][i];
out[2] = coutput[2][i];
out[3] = 255;
out += n;
}
} else {
z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n);
}
} else if (z->s->img_n == 4) {
if (z->app14_color_transform == 0) { // CMYK
for (i=0; i < z->s->img_x; ++i) {
stbi_uc m = coutput[3][i];
out[0] = stbi__blinn_8x8(coutput[0][i], m);
out[1] = stbi__blinn_8x8(coutput[1][i], m);
out[2] = stbi__blinn_8x8(coutput[2][i], m);
out[3] = 255;
out += n;
}
} else if (z->app14_color_transform == 2) { // YCCK
z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n);
for (i=0; i < z->s->img_x; ++i) {
stbi_uc m = coutput[3][i];
out[0] = stbi__blinn_8x8(255 out[0], m);
out[1] = stbi__blinn_8x8(255 out[1], m);
out[2] = stbi__blinn_8x8(255 out[2], m);
out += n;
}
} else { // YCbCr + alpha?Ignore the fourth channel for now
z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n);
}
} else
for (i=0; i < z->s->img_x; ++i) {
out[0] = out[1] = out[2] = y[i];
out[3] = 255; // not used if n==3
out += n;
}
} else {
if (is_rgb) {
if (n == 1)
for (i=0; i < z->s->img_x; ++i)
*out++ = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]);
else {
for (i=0; i < z->s->img_x; ++i, out += 2) {
out[0] = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]);
out[1] = 255;
}
}
} else if (z->s->img_n == 4 && z->app14_color_transform == 0) {
for (i=0; i < z->s->img_x; ++i) {
stbi_uc m = coutput[3][i];
stbi_uc r = stbi__blinn_8x8(coutput[0][i], m);
stbi_uc g = stbi__blinn_8x8(coutput[1][i], m);
stbi_uc b = stbi__blinn_8x8(coutput[2][i], m);
out[0] = stbi__compute_y(r, g, b);
out[1] = 255;
out += n;
}
} else if (z->s->img_n == 4 && z->app14_color_transform == 2) {
for (i=0; i < z->s->img_x; ++i) {
out[0] = stbi__blinn_8x8(255 coutput[0][i], coutput[3][i]);
out[1] = 255;
out += n;
}
} else {
stbi_uc *y = coutput[0];
if (n == 1)
for (i=0; i < z->s->img_x; ++i) out[i] = y[i];
else
for (i=0; i < z->s->img_x; ++i) { *out++ = y[i]; *out++ = 255; }
}
}
}
stbi__cleanup_jpeg(z);
*out_x = z->s->img_x;
*out_y = z->s->img_y;
if (comp) *comp = z->s->img_n >= 3 ? 3 : 1; // report original components, not output
return output;
}
}
{
unsigned char* result;
stbi__jpeg* j = (stbi__jpeg*) stbi__malloc(sizeof(stbi__jpeg));
STBI_NOTUSED(ri);
j->s = s;
stbi__setup_jpeg(j);
result = load_jpeg_image(j, x,y,comp,req_comp);
STBI_FREE(j);
return result;
}
{
int r;
stbi__jpeg* j = (stbi__jpeg*)stbi__malloc(sizeof(stbi__jpeg));
j->s = s;
stbi__setup_jpeg(j);
r = stbi__decode_jpeg_header(j, STBI__SCAN_type);
stbi__rewind(s);
STBI_FREE(j);
return r;
}
{
if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) {
stbi__rewind( j->s );
return 0;
}
if (x) *x = j->s->img_x;
if (y) *y = j->s->img_y;
if (comp) *comp = j->s->img_n >= 3 ? 3 : 1;
return 1;
}
{
int result;
stbi__jpeg* j = (stbi__jpeg*) (stbi__malloc(sizeof(stbi__jpeg)));
j->s = s;
result = stbi__jpeg_info_raw(j, x, y, comp);
STBI_FREE(j);
return result;
}
#endif
//simple implementation
// all input must be provided in an upfront buffer
// all output is written to a single output buffer (can malloc/realloc)
//performance
// fast huffman
#define STBI__ZFAST_BITS9 // accelerate all cases in default tables
#define STBI__ZFAST_MASK((1 << STBI__ZFAST_BITS) – 1)// zlib-style huffman encoding// (jpegs packs from left, zlib from right, so can’t share code)typedef struct{ stbi__uint16 fast[1 << STBI__ZFAST_BITS]; stbi__uint16 firstcode[16]; int maxcode[17]; stbi__uint16 firstsymbol[16]; stbi_ucsize[288]; stbi__uint16 value[288];} stbi__zhuffman;stbi_inline static int stbi__bitreverse16(int n){n = ((n & 0xAAAA) >>1) | ((n & 0x5555) << 1);n = ((n & 0xCCCC) >>2) | ((n & 0x3333) << 2);n = ((n & 0xF0F0) >>4) | ((n & 0x0F0F) << 4);n = ((n & 0xFF00) >>8) | ((n & 0x00FF) << 8);return n;}stbi_inline static int stbi__bit_reverse(int v, int bits){ STBI_ASSERT(bits <= 16); // to bit reverse n bits, reverse 16 and shift // e.g. 11 bits, bit reverse and shift away 5 return stbi__bitreverse16(v) >> (16-bits);
}
{
int i,k=0;
int code, next_code[16], sizes[17];
memset(sizes, 0, sizeof(sizes));
memset(z->fast, 0, sizeof(z->fast));
for (i=0; i < num; ++i)++sizes[sizelist[i]]; sizes[0] = 0; for (i=1; i < 16; ++i)if (sizes[i] > (1 << i)) return stbi__err(“bad sizes”, “Corrupt PNG”); code = 0; for (i=1; i < 16; ++i) {next_code[i] = code;z->firstcode[i] = (stbi__uint16) code;
z->firstsymbol[i] = (stbi__uint16) k;
code = (code + sizes[i]);
if (sizes[i])
if (code-1 >= (1 << i)) return stbi__err(“bad codelengths”,”Corrupt PNG”);z->maxcode[i] = code << (16-i); // preshift for inner loopcode <<= 1;k += sizes[i]; } z->maxcode[16] = 0x10000; // sentinel
for (i=0; i < num; ++i) {int s = sizelist[i];if (s) { int c = next_code[s] – z->firstcode[s] + z->firstsymbol[s];
stbi__uint16 fastv = (stbi__uint16) ((s << 9) | i); z->size [c] = (stbi_uc ) s;
z->value[c] = (stbi__uint16) i;
if (s <= STBI__ZFAST_BITS) {int j = stbi__bit_reverse(next_code[s],s);while (j < (1 << STBI__ZFAST_BITS)) { z->fast[j] = fastv;
j += (1 << s);} } ++next_code[s];} } return 1;}// zlib-from-memory implementation for PNG reading//because PNG allows splitting the zlib stream arbitrarily,//and it’s annoying structurally to have PNG call ZLIB call PNG,//we require PNG read all the IDATs and combine them into a single//memory buffertypedef struct{ stbi_uc *zbuffer, *zbuffer_end; int num_bits; stbi__uint32 code_buffer; char *zout; char *zout_start; char *zout_end; int z_expandable; stbi__zhuffman z_length, z_distance;} stbi__zbuf;stbi_inline static int stbi__zeof(stbi__zbuf *z){ return (z->zbuffer >= z->zbuffer_end);
}
{
return stbi__zeof(z) ? 0 : *z->zbuffer++;
}
{
do {
if (z->code_buffer >= (1U << z->num_bits)) {
z->zbuffer = z->zbuffer_end;/* treat this as EOF so we fail. */
return;
}
z->code_buffer |= (unsigned int) stbi__zget8(z) << z->num_bits;
z->num_bits += 8;
} while (z->num_bits <= 24);}stbi_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n){ unsigned int k; if (z->num_bits < n) stbi__fill_bits(z); k = z->code_buffer & ((1 << n) – 1); z->code_buffer >>= n;
z->num_bits -= n;
return k;
}
{
int b,s,k;
// not resolved by fast table, so compute it the slow way
// use jpeg approach, which requires MSbits at top
k = stbi__bit_reverse(a->code_buffer, 16);
for (s=STBI__ZFAST_BITS+1; ; ++s)
if (k < z->maxcode[s])
break;
if (s >= 16) return -1; // invalid code!
// code size is s, so:
b = (k >> (16-s)) z->firstcode[s] + z->firstsymbol[s];
if (b >= sizeof (z->size)) return -1; // some data was corrupt somewhere!
if (z->size[b] != s) return -1;// was originally an assert, but report failure instead.
a->code_buffer >>= s;
a->num_bits -= s;
return z->value[b];
}
{
int b,s;
if (a->num_bits < 16) {if (stbi__zeof(a)) { return -1; /* report error for unexpected end of data. */}stbi__fill_bits(a); } b = z->fast[a->code_buffer & STBI__ZFAST_MASK];
if (b) {
s = b >> 9;
a->code_buffer >>= s;
a->num_bits -= s;
return b & 511;
}
return stbi__zhuffman_decode_slowpath(a, z);
}
{
char *q;
unsigned int cur, limit, old_limit;
z->zout = zout;
if (!z->z_expandable) return stbi__err(output buffer limit,Corrupt PNG);
cur = (unsigned int) (z->zout z->zout_start);
limit = old_limit = (unsigned) (z->zout_end z->zout_start);
if (UINT_MAX cur < (unsigned) n) return stbi__err(“outofmem”, “Out of memory”); while (cur + n > limit) {
if(limit > UINT_MAX / 2) return stbi__err(outofmem, Out of memory);
limit *= 2;
}
q = (char *) STBI_REALLOC_SIZED(z->zout_start, old_limit, limit);
STBI_NOTUSED(old_limit);
if (q == NULL) return stbi__err(outofmem, Out of memory);
z->zout_start = q;
z->zout = q + cur;
z->zout_end = q + limit;
return 1;
}
3,4,5,6,7,8,9,10,11,13,
15,17,19,23,27,31,35,43,51,59,
67,83,99,115,131,163,195,227,258,0,0 };
{ 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };
257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0};
{ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
{
char *zout = a->zout;
for(;;) {
int z = stbi__zhuffman_decode(a, &a->z_length);
if (z < 256) { if (z < 0) return stbi__err(“bad huffman code”,”Corrupt PNG”); // error in huffman codes if (zout >= a->zout_end) {
if (!stbi__zexpand(a, zout, 1)) return 0;
zout = a->zout;
}
*zout++ = (char) z;
} else {
stbi_uc *p;
int len,dist;
if (z == 256) {
a->zout = zout;
return 1;
}
z -= 257;
len = stbi__zlength_base[z];
if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]);
z = stbi__zhuffman_decode(a, &a->z_distance);
if (z < 0) return stbi__err(“bad huffman code”,”Corrupt PNG”); dist = stbi__zdist_base[z]; if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]); if (zout – a->zout_start < dist) return stbi__err(“bad dist”,”Corrupt PNG”); if (zout + len > a->zout_end) {
if (!stbi__zexpand(a, zout, len)) return 0;
zout = a->zout;
}
p = (stbi_uc *) (zout dist);
if (dist == 1) { // run of one byte; common in images.
stbi_uc v = *p;
if (len) { do *zout++ = v; while (len); }
} else {
if (len) { do *zout++ = *p++; while (len); }
}
}
}
}
{
static const stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
stbi__zhuffman z_codelength;
stbi_uc lencodes[286+32+137];//padding for maximum single op
stbi_uc codelength_sizes[19];
int i,n;
int hdist = stbi__zreceive(a,5) + 1;
int hclen = stbi__zreceive(a,4) + 4;
int ntot= hlit + hdist;
for (i=0; i < hclen; ++i) {int s = stbi__zreceive(a,3);codelength_sizes[length_dezigzag[i]] = (stbi_uc) s; } if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0; n = 0; while (n < ntot) {int c = stbi__zhuffman_decode(a, &z_codelength);if (c < 0 || c >= 19) return stbi__err(bad codelengths, Corrupt PNG);
if (c < 16) lencodes[n++] = (stbi_uc) c;else { stbi_uc fill = 0; if (c == 16) {c = stbi__zreceive(a,2)+3;if (n == 0) return stbi__err(“bad codelengths”, “Corrupt PNG”);fill = lencodes[n-1]; } else if (c == 17) {c = stbi__zreceive(a,3)+3; } else if (c == 18) {c = stbi__zreceive(a,7)+11; } else {return stbi__err(“bad codelengths”, “Corrupt PNG”); } if (ntot – n < c) return stbi__err(“bad codelengths”, “Corrupt PNG”); memset(lencodes+n, fill, c); n += c;} } if (n != ntot) return stbi__err(“bad codelengths”,”Corrupt PNG”); if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0;
if (!stbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0;
return 1;
}
{
stbi_uc header[4];
int len,nlen,k;
if (a->num_bits & 7)
stbi__zreceive(a, a->num_bits & 7); // discard
// drain the bit-packed data into header
k = 0;
while (a->num_bits > 0) {
header[k++] = (stbi_uc) (a->code_buffer & 255); // suppress MSVC run-time check
a->code_buffer >>= 8;
a->num_bits -= 8;
}
if (a->num_bits < 0) return stbi__err(“zlib corrupt”,”Corrupt PNG”); // now fill header the normal way while (k < 4)header[k++] = stbi__zget8(a); len= header[1] * 256 + header[0]; nlen = header[3] * 256 + header[2]; if (nlen != (len ^ 0xffff)) return stbi__err(“zlib corrupt”,”Corrupt PNG”); if (a->zbuffer + len > a->zbuffer_end) return stbi__err(read past buffer,Corrupt PNG);
if (a->zout + len > a->zout_end)
if (!stbi__zexpand(a, a->zout, len)) return 0;
memcpy(a->zout, a->zbuffer, len);
a->zbuffer += len;
a->zout += len;
return 1;
}
{
int cmf = stbi__zget8(a);
int cm= cmf & 15;
/* int cinfo = cmf >> 4; */
int flg = stbi__zget8(a);
if (stbi__zeof(a)) return stbi__err(bad zlib header,Corrupt PNG); // zlib spec
if ((cmf*256+flg) % 31 != 0) return stbi__err(bad zlib header,Corrupt PNG); // zlib spec
if (flg & 32) return stbi__err(no preset dict,Corrupt PNG); // preset dictionary not allowed in png
if (cm != 8) return stbi__err(bad compression,Corrupt PNG); // DEFLATE required for png
// window = 1 << (8 + cinfo)… but who cares, we fully buffer output return 1;}static const stbi_uc stbi__zdefault_length[288] ={ 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8};static const stbi_uc stbi__zdefault_distance[32] ={ 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5};/*Init algorithm:{ int i; // use <= to match clearly with spec for (i=0; i <= 143; ++i) stbi__zdefault_length[i] = 8; for ( ; i <= 255; ++i) stbi__zdefault_length[i] = 9; for ( ; i <= 279; ++i) stbi__zdefault_length[i] = 7; for ( ; i <= 287; ++i) stbi__zdefault_length[i] = 8; for (i=0; i <=31; ++i) stbi__zdefault_distance[i] = 5;}*/static int stbi__parse_zlib(stbi__zbuf *a, int parse_header){ int final, type; if (parse_header)if (!stbi__parse_zlib_header(a)) return 0; a->num_bits = 0;
a->code_buffer = 0;
do {
final = stbi__zreceive(a,1);
type = stbi__zreceive(a,2);
if (type == 0) {
if (!stbi__parse_uncompressed_block(a)) return 0;
} else if (type == 3) {
return 0;
} else {
if (type == 1) {
// use fixed code lengths
if (!stbi__zbuild_huffman(&a->z_length, stbi__zdefault_length, 288)) return 0;
if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance,32)) return 0;
} else {
if (!stbi__compute_huffman_codes(a)) return 0;
}
if (!stbi__parse_huffman_block(a)) return 0;
}
} while (!final);
return 1;
}
{
a->zout_start = obuf;
a->zout = obuf;
a->zout_end = obuf + olen;
a->z_expandable = exp;
}
{
stbi__zbuf a;
char *p = (char *) stbi__malloc(initial_size);
if (p == NULL) return NULL;
a.zbuffer = (stbi_uc *) buffer;
a.zbuffer_end = (stbi_uc *) buffer + len;
if (stbi__do_zlib(&a, p, initial_size, 1, 1)) {
if (outlen) *outlen = (int) (a.zout a.zout_start);
return a.zout_start;
} else {
STBI_FREE(a.zout_start);
return NULL;
}
}
{
return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen);
}
{
stbi__zbuf a;
char *p = (char *) stbi__malloc(initial_size);
if (p == NULL) return NULL;
a.zbuffer = (stbi_uc *) buffer;
a.zbuffer_end = (stbi_uc *) buffer + len;
if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) {
if (outlen) *outlen = (int) (a.zout a.zout_start);
return a.zout_start;
} else {
STBI_FREE(a.zout_start);
return NULL;
}
}
{
stbi__zbuf a;
a.zbuffer = (stbi_uc *) ibuffer;
a.zbuffer_end = (stbi_uc *) ibuffer + ilen;
if (stbi__do_zlib(&a, obuffer, olen, 0, 1))
return (int) (a.zout a.zout_start);
else
return -1;
}
{
stbi__zbuf a;
char *p = (char *) stbi__malloc(16384);
if (p == NULL) return NULL;
a.zbuffer = (stbi_uc *) buffer;
a.zbuffer_end = (stbi_uc *) buffer+len;
if (stbi__do_zlib(&a, p, 16384, 1, 0)) {
if (outlen) *outlen = (int) (a.zout a.zout_start);
return a.zout_start;
} else {
STBI_FREE(a.zout_start);
return NULL;
}
}
{
stbi__zbuf a;
a.zbuffer = (stbi_uc *) ibuffer;
a.zbuffer_end = (stbi_uc *) ibuffer + ilen;
if (stbi__do_zlib(&a, obuffer, olen, 0, 0))
return (int) (a.zout a.zout_start);
else
return -1;
}
#endif
//simple implementation
// only 8-bit samples
// no CRC checking
// allocates lots of intermediate memory
// avoids problem of streaming data between subsystems
// avoids explicit window management
//performance
// uses stb_zlib, a PD zlib implementation with fast huffman decoding
typedef struct
{
stbi__uint32 length;
stbi__uint32 type;
} stbi__pngchunk;
{
stbi__pngchunk c;
c.length = stbi__get32be(s);
c.type = stbi__get32be(s);
return c;
}
{
static const stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 };
int i;
for (i=0; i < 8; ++i)if (stbi__get8(s) != png_sig[i]) return stbi__err(“bad png sig”,”Not a PNG”); return 1;}typedef struct{ stbi__context *s; stbi_uc *idata, *expanded, *out; int depth;} stbi__png;enum { STBI__F_none=0, STBI__F_sub=1, STBI__F_up=2, STBI__F_avg=3, STBI__F_paeth=4, // synthetic filters used for first scanline to avoid needing a dummy row of 0s STBI__F_avg_first, STBI__F_paeth_first};static stbi_uc first_row_filter[5] ={ STBI__F_none, STBI__F_sub, STBI__F_none, STBI__F_avg_first, STBI__F_paeth_first};static int stbi__paeth(int a, int b, int c){ int p = a + b – c; int pa = abs(p-a); int pb = abs(p-b); int pc = abs(p-c); if (pa <= pb && pa <= pc) return a; if (pb <= pc) return b; return c;}static const stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 };// create the png data from post-deflated datastatic int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color){ int bytes = (depth == 16? 2 : 1); stbi__context *s = a->s;
stbi__uint32 i,j,stride = x*out_n*bytes;
stbi__uint32 img_len, img_width_bytes;
int k;
int img_n = s->img_n; // copy it into a local for later
int filter_bytes = img_n*bytes;
int width = x;
a->out = (stbi_uc *) stbi__malloc_mad3(x, y, output_bytes, 0); // extra bytes to write off the end into
if (!a->out) return stbi__err(outofmem, Out of memory);
img_width_bytes = (((img_n * x * depth) + 7) >> 3);
img_len = (img_width_bytes + 1) * y;
// but issue #276 reported a PNG in the wild that had extra data at the end (all zeros),
// so just check for raw_len < img_len always. if (raw_len < img_len) return stbi__err(“not enough pixels”,”Corrupt PNG”); for (j=0; j < y; ++j) {stbi_uc *cur = a->out + stride*j;
stbi_uc *prior;
int filter = *raw++;
return stbi__err(invalid filter,Corrupt PNG);
cur += x*out_n img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place
filter_bytes = 1;
width = img_width_bytes;
}
prior = cur stride; // bugfix: need to compute this after cur += computation above
if (j == 0) filter = first_row_filter[filter];
for (k=0; k < filter_bytes; ++k) { switch (filter) {case STBI__F_none : cur[k] = raw[k]; break;case STBI__F_sub: cur[k] = raw[k]; break;case STBI__F_up : cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break;case STBI__F_avg: cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); break;
case STBI__F_paeth: cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0,prior[k],0)); break;
case STBI__F_avg_first: cur[k] = raw[k]; break;
case STBI__F_paeth_first: cur[k] = raw[k]; break;
}
}
if (img_n != out_n)
cur[img_n] = 255; // first pixel
raw += img_n;
cur += out_n;
prior += out_n;
} else if (depth == 16) {
if (img_n != out_n) {
cur[filter_bytes] = 255; // first pixel top byte
cur[filter_bytes+1] = 255; // first pixel bottom byte
}
raw += filter_bytes;
cur += output_bytes;
prior += output_bytes;
} else {
raw += 1;
cur += 1;
prior += 1;
}
if (depth < 8 || img_n == out_n) { int nk = (width – 1)*filter_bytes; #define STBI__CASE(f) case f: for (k=0; k < nk; ++k) switch (filter) {// “none” filter turns into a memcpy here; make that explicit.case STBI__F_none: memcpy(cur, raw, nk); break;STBI__CASE(STBI__F_sub){ cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); } break;STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break;STBI__CASE(STBI__F_avg){ cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); } break;
STBI__CASE(STBI__F_paeth){ cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],prior[k],prior[k-filter_bytes])); } break;
STBI__CASE(STBI__F_avg_first){ cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); } break;
STBI__CASE(STBI__F_paeth_first){ cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],0,0)); } break;
}
#undef STBI__CASE
raw += nk;
} else {
STBI_ASSERT(img_n+1 == out_n);
#define STBI__CASE(f)
case f:
for (i=x-1; i >= 1; i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes)
for (k=0; k < filter_bytes; ++k) switch (filter) {STBI__CASE(STBI__F_none) { cur[k] = raw[k]; } break;STBI__CASE(STBI__F_sub){ cur[k] = STBI__BYTECAST(raw[k] + cur[k- output_bytes]); } break;STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break;STBI__CASE(STBI__F_avg){ cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k- output_bytes])>>1)); } break;
STBI__CASE(STBI__F_paeth){ cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],prior[k],prior[k- output_bytes])); } break;
STBI__CASE(STBI__F_avg_first){ cur[k] = STBI__BYTECAST(raw[k] + (cur[k- output_bytes] >> 1)); } break;
STBI__CASE(STBI__F_paeth_first){ cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],0,0)); } break;
}
#undef STBI__CASE
// 16 bit png files we also need the low byte set. well do that here.
if (depth == 16) {
cur = a->out + stride*j; // start at the beginning of the row again
for (i=0; i < x; ++i,cur+=output_bytes) { cur[filter_bytes+1] = 255;} }} } // we make a separate pass to expand bits to pixels; for performance, // this could run two scanlines behind the above code, so it won’t // intefere with filtering but will still be in the cache. if (depth < 8) {for (j=0; j < y; ++j) { stbi_uc *cur = a->out + stride*j;
stbi_uc *in= a->out + stride*j + x*out_n img_width_bytes;
// unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit
// png guarante byte alignment, if width is not multiple of 8/4/2 well decode dummy trailing data that will be skipped in the later loop
stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range
// we can allocate enough data that this never writes out of memory, but it
// could also overwrite the next scanline. can it overwrite non-empty data
// on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel.
// so we need to explicitly clamp the final ones
for (k=x*img_n; k >= 2; k-=2, ++in) {
*cur++ = scale * ((*in >> 4) );
*cur++ = scale * ((*in ) & 0x0f);
}
if (k > 0) *cur++ = scale * ((*in >> 4) );
} else if (depth == 2) {
for (k=x*img_n; k >= 4; k-=4, ++in) {
*cur++ = scale * ((*in >> 6) );
*cur++ = scale * ((*in >> 4) & 0x03);
*cur++ = scale * ((*in >> 2) & 0x03);
*cur++ = scale * ((*in ) & 0x03);
}
if (k > 0) *cur++ = scale * ((*in >> 6) );
if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03);
if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03);
} else if (depth == 1) {
for (k=x*img_n; k >= 8; k-=8, ++in) {
*cur++ = scale * ((*in >> 7) );
*cur++ = scale * ((*in >> 6) & 0x01);
*cur++ = scale * ((*in >> 5) & 0x01);
*cur++ = scale * ((*in >> 4) & 0x01);
*cur++ = scale * ((*in >> 3) & 0x01);
*cur++ = scale * ((*in >> 2) & 0x01);
*cur++ = scale * ((*in >> 1) & 0x01);
*cur++ = scale * ((*in ) & 0x01);
}
if (k > 0) *cur++ = scale * ((*in >> 7) );
if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01);
if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01);
if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01);
if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01);
if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01);
if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01);
}
if (img_n != out_n) {
int q;
// insert alpha = 255
cur = a->out + stride*j;
if (img_n == 1) {
for (q=x-1; q >= 0; q) {
cur[q*2+1] = 255;
cur[q*2+0] = cur[q];
}
} else {
STBI_ASSERT(img_n == 3);
for (q=x-1; q >= 0; q) {
cur[q*4+3] = 255;
cur[q*4+2] = cur[q*3+2];
cur[q*4+1] = cur[q*3+1];
cur[q*4+0] = cur[q*3+0];
}
}
}
}
} else if (depth == 16) {
// force the image data from big-endian to platform-native.
// this is done in a separate pass due to the decoding relying
// on the data being untouched, but could probably be done
// per-line during decode if care is taken.
stbi_uc *cur = a->out;
stbi__uint16 *cur16 = (stbi__uint16*)cur;
final = (stbi_uc *) stbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0);
for (p=0; p < 7; ++p) {int xorig[] = { 0,4,0,2,0,1,0 };int yorig[] = { 0,0,4,0,2,0,1 };int xspc[]= { 8,8,4,4,2,2,1 };int yspc[]= { 8,8,8,4,4,2,2 };int i,j,x,y;// pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1x = (a->s->img_x xorig[p] + xspc[p]-1) / xspc[p];
y = (a->s->img_y yorig[p] + yspc[p]-1) / yspc[p];
if (x && y) {
stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y;
if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) {
STBI_FREE(final);
return 0;
}
for (j=0; j < y; ++j) {for (i=0; i < x; ++i) { int out_y = j*yspc[p]+yorig[p]; int out_x = i*xspc[p]+xorig[p]; memcpy(final + out_y*a->s->img_x*out_bytes + out_x*out_bytes,
a->out + (j*x+i)*out_bytes, out_bytes);
}
}
STBI_FREE(a->out);
image_data += img_len;
image_data_len -= img_len;
}
}
a->out = final;
}
{
stbi__context *s = z->s;
stbi__uint32 i, pixel_count = s->img_x * s->img_y;
stbi_uc *p = z->out;
// already got 255 as the alpha value in the output
STBI_ASSERT(out_n == 2 || out_n == 4);
for (i=0; i < pixel_count; ++i) { p[1] = (p[0] == tc[0] ? 0 : 255); p += 2;} } else {for (i=0; i < pixel_count; ++i) { if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])p[3] = 0; p += 4;} } return 1;}static int stbi__compute_transparency16(stbi__png *z, stbi__uint16 tc[3], int out_n){ stbi__context *s = z->s;
stbi__uint32 i, pixel_count = s->img_x * s->img_y;
stbi__uint16 *p = (stbi__uint16*) z->out;
// already got 65535 as the alpha value in the output
STBI_ASSERT(out_n == 2 || out_n == 4);
for (i = 0; i < pixel_count; ++i) { p[1] = (p[0] == tc[0] ? 0 : 65535); p += 2;} } else {for (i = 0; i < pixel_count; ++i) { if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])p[3] = 0; p += 4;} } return 1;}static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n){ stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y;
stbi_uc *p, *temp_out, *orig = a->out;
if (p == NULL) return stbi__err(outofmem, Out of memory);
temp_out = p;
for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n]; p[1] = palette[n+1]; p[2] = palette[n+2]; p += 3;} } else {for (i=0; i < pixel_count; ++i) { int n = orig[i]*4; p[0] = palette[n]; p[1] = palette[n+1]; p[2] = palette[n+2]; p[3] = palette[n+3]; p += 4;} } STBI_FREE(a->out);
a->out = temp_out;
}
static int stbi__de_iphone_flag = 0;
{
stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply;
}
{
stbi__de_iphone_flag = flag_true_if_should_convert;
}
{
stbi__context *s = z->s;
stbi__uint32 i, pixel_count = s->img_x * s->img_y;
stbi_uc *p = z->out;
for (i=0; i < pixel_count; ++i) { stbi_uc t = p[0]; p[0] = p[2]; p[2] = t; p += 3;} } else {STBI_ASSERT(s->img_out_n == 4);
if (stbi__unpremultiply_on_load) {
// convert bgr to rgb and unpremultiply
for (i=0; i < pixel_count; ++i) {stbi_uc a = p[3];stbi_uc t = p[0];if (a) { stbi_uc half = a / 2; p[0] = (p[2] * 255 + half) / a; p[1] = (p[1] * 255 + half) / a; p[2] = ( t * 255 + half) / a;} else { p[0] = p[2]; p[2] = t;}p += 4; }} else { // convert bgr to rgb for (i=0; i < pixel_count; ++i) {stbi_uc t = p[0];p[0] = p[2];p[2] = t;p += 4; }} }}#define STBI__PNG_TYPE(a,b,c,d)(((unsigned) (a) << 24) + ((unsigned) (b) << 16) + ((unsigned) (c) << 8) + (unsigned) (d))static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp){ stbi_uc palette[1024], pal_img_n=0; stbi_uc has_trans=0, tc[3]={0}; stbi__uint16 tc16[3]; stbi__uint32 ioff=0, idata_limit=0, i, pal_len=0; int first=1,k,interlace=0, color=0, is_iphone=0; stbi__context *s = z->s;
z->idata = NULL;
z->out = NULL;
stbi__pngchunk c = stbi__get_chunk_header(s);
switch (c.type) {
case STBI__PNG_TYPE(C,g,B,I):
is_iphone = 1;
stbi__skip(s, c.length);
break;
case STBI__PNG_TYPE(I,H,D,R): {
int comp,filter;
if (!first) return stbi__err(multiple IHDR,Corrupt PNG);
first = 0;
if (c.length != 13) return stbi__err(bad IHDR len,Corrupt PNG);
s->img_x = stbi__get32be(s);
s->img_y = stbi__get32be(s);
if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__err(too large,Very large image (corrupt?));
if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__err(too large,Very large image (corrupt?));
z->depth = stbi__get8(s);if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16)return stbi__err(1/2/4/8/16-bit only,PNG not supported: 1/2/4/8/16-bit only);
color = stbi__get8(s);if (color > 6) return stbi__err(bad ctype,Corrupt PNG);
if (color == 3 && z->depth == 16)return stbi__err(bad ctype,Corrupt PNG);
if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err(bad ctype,Corrupt PNG);
comp= stbi__get8(s);if (comp) return stbi__err(bad comp method,Corrupt PNG);
filter= stbi__get8(s);if (filter) return stbi__err(bad filter method,Corrupt PNG);
interlace = stbi__get8(s); if (interlace>1) return stbi__err(bad interlace method,Corrupt PNG);
if (!s->img_x || !s->img_y) return stbi__err(0-pixel image,Corrupt PNG);
if (!pal_img_n) {
s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0);
if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err(too large, Image too large to decode);
if (scan == STBI__SCAN_header) return 1;
} else {
// if paletted, then pal_n is our final components, and
// img_n is # components to decompress/filter.
s->img_n = 1;
if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err(too large,Corrupt PNG);
// if SCAN_header, have to scan to see if we have a tRNS
}
break;
}
if (first) return stbi__err(first not IHDR, Corrupt PNG);
if (c.length > 256*3) return stbi__err(invalid PLTE,Corrupt PNG);
pal_len = c.length / 3;
if (pal_len * 3 != c.length) return stbi__err(invalid PLTE,Corrupt PNG);
for (i=0; i < pal_len; ++i) { palette[i*4+0] = stbi__get8(s); palette[i*4+1] = stbi__get8(s); palette[i*4+2] = stbi__get8(s); palette[i*4+3] = 255;}break; } case STBI__PNG_TYPE(‘t’,’R’,’N’,’S’): {if (first) return stbi__err(“first not IHDR”, “Corrupt PNG”);if (z->idata) return stbi__err(tRNS after IDAT,Corrupt PNG);
if (pal_img_n) {
if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; }
if (pal_len == 0) return stbi__err(tRNS before PLTE,Corrupt PNG);
if (c.length > pal_len) return stbi__err(bad tRNS len,Corrupt PNG);
pal_img_n = 4;
for (i=0; i < c.length; ++i)palette[i*4+3] = stbi__get8(s);} else { if (!(s->img_n & 1)) return stbi__err(tRNS with alpha,Corrupt PNG);
if (c.length != (stbi__uint32) s->img_n*2) return stbi__err(bad tRNS len,Corrupt PNG);
has_trans = 1;
if (z->depth == 16) {
for (k = 0; k < s->img_n; ++k) tc16[k] = (stbi__uint16)stbi__get16be(s); // copy the values as-is
} else {
for (k = 0; k < s->img_n; ++k) tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * stbi__depth_scale_table[z->depth]; // non 8-bit images will be larger
}
}
break;
}
if (first) return stbi__err(first not IHDR, Corrupt PNG);
if (pal_img_n && !pal_len) return stbi__err(no PLTE,Corrupt PNG);
if (scan == STBI__SCAN_header) { s->img_n = pal_img_n; return 1; }
if ((int)(ioff + c.length) < (int)ioff) return 0;if (ioff + c.length > idata_limit) {
stbi__uint32 idata_limit_old = idata_limit;
stbi_uc *p;
if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096;
while (ioff + c.length > idata_limit)
idata_limit *= 2;
STBI_NOTUSED(idata_limit_old);
p = (stbi_uc *) STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return stbi__err(outofmem, Out of memory);
z->idata = p;
}
if (!stbi__getn(s, z->idata+ioff,c.length)) return stbi__err(outofdata,Corrupt PNG);
ioff += c.length;
break;
}
stbi__uint32 raw_len, bpl;
if (first) return stbi__err(first not IHDR, Corrupt PNG);
if (scan != STBI__SCAN_load) return 1;
if (z->idata == NULL) return stbi__err(no IDAT,Corrupt PNG);
// initial guess for decoded data size to avoid unnecessary reallocs
bpl = (s->img_x * z->depth + 7) / 8; // bytes per line, per component
raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */;
z->expanded = (stbi_uc *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, raw_len, (int *) &raw_len, !is_iphone);
if (z->expanded == NULL) return 0; // zlib should set error
STBI_FREE(z->idata); z->idata = NULL;
if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans)
s->img_out_n = s->img_n+1;
else
s->img_out_n = s->img_n;
if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) return 0;
if (has_trans) {
if (z->depth == 16) {
if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) return 0;
} else {
if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0;
}
}
if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2)
stbi__de_iphone(z);
if (pal_img_n) {
// pal_img_n == 3 or 4
s->img_n = pal_img_n; // record the actual colors we had
s->img_out_n = pal_img_n;
if (req_comp >= 3) s->img_out_n = req_comp;
if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n))
return 0;
} else if (has_trans) {
// non-paletted image with tRNS -> source image has (constant) alpha
++s->img_n;
}
STBI_FREE(z->expanded); z->expanded = NULL;
// end of PNG chunk, read and skip CRC
stbi__get32be(s);
return 1;
}
// if critical, fail
if (first) return stbi__err(first not IHDR, Corrupt PNG);
if ((c.type & (1 << 29)) == 0) { #ifndef STBI_NO_FAILURE_STRINGS // not threadsafe static char invalid_chunk[] = “XXXX PNG chunk not known”; invalid_chunk[0] = STBI__BYTECAST(c.type >> 24);
invalid_chunk[1] = STBI__BYTECAST(c.type >> 16);
invalid_chunk[2] = STBI__BYTECAST(c.type >>8);
invalid_chunk[3] = STBI__BYTECAST(c.type >>0);
#endif
return stbi__err(invalid_chunk, PNG not supported: unknown PNG chunk type);
}
stbi__skip(s, c.length);
break;
}
// end of PNG chunk, read and skip CRC
stbi__get32be(s);
}
}
{
void *result=NULL;
if (req_comp < 0 || req_comp > 4) return stbi__errpuc(bad req_comp, Internal error);
if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) {
if (p->depth <= 8) ri->bits_per_channel = 8;
else if (p->depth == 16)
ri->bits_per_channel = 16;
else
return stbi__errpuc(bad bits_per_channel, PNG not supported: unsupported color depth);
result = p->out;
p->out = NULL;
if (req_comp && req_comp != p->s->img_out_n) {
if (ri->bits_per_channel == 8)
result = stbi__convert_format((unsigned char *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
else
result = stbi__convert_format16((stbi__uint16 *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
p->s->img_out_n = req_comp;
if (result == NULL) return result;
}
*x = p->s->img_x;
*y = p->s->img_y;
if (n) *n = p->s->img_n;
}
STBI_FREE(p->out);p->out= NULL;
STBI_FREE(p->expanded); p->expanded = NULL;
STBI_FREE(p->idata);p->idata= NULL;
}
{
stbi__png p;
p.s = s;
return stbi__do_png(&p, x,y,comp,req_comp, ri);
}
{
int r;
r = stbi__check_png_header(s);
stbi__rewind(s);
return r;
}
{
if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) {
stbi__rewind( p->s );
return 0;
}
if (x) *x = p->s->img_x;
if (y) *y = p->s->img_y;
if (comp) *comp = p->s->img_n;
return 1;
}
{
stbi__png p;
p.s = s;
return stbi__png_info_raw(&p, x, y, comp);
}
{
stbi__png p;
p.s = s;
if (!stbi__png_info_raw(&p, NULL, NULL, NULL))
return 0;
if (p.depth != 16) {
stbi__rewind(p.s);
return 0;
}
return 1;
}
#endif
static int stbi__bmp_test_raw(stbi__context *s)
{
int r;
int sz;
if (stbi__get8(s) != B) return 0;
if (stbi__get8(s) != M) return 0;
stbi__get32le(s); // discard filesize
stbi__get16le(s); // discard reserved
stbi__get16le(s); // discard reserved
stbi__get32le(s); // discard data offset
sz = stbi__get32le(s);
r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124);
return r;
}
{
int r = stbi__bmp_test_raw(s);
stbi__rewind(s);
return r;
}
static int stbi__high_bit(unsigned int z)
{
int n=0;
if (z == 0) return -1;
if (z >= 0x10000) { n += 16; z >>= 16; }
if (z >= 0x00100) { n +=8; z >>=8; }
if (z >= 0x00010) { n +=4; z >>=4; }
if (z >= 0x00004) { n +=2; z >>=2; }
if (z >= 0x00002) { n +=1;/* >>=1;*/ }
return n;
}
{
a = (a & 0x55555555) + ((a >>1) & 0x55555555); // max 2
a = (a & 0x33333333) + ((a >>2) & 0x33333333); // max 4
a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits
a = (a + (a >> 8)); // max 16 per 8 bits
a = (a + (a >> 16)); // max 32 per 8 bits
return a & 0xff;
}
// from v, and then make it 8-bits long and fractionally
// extend it to full full range.
static int stbi__shiftsigned(unsigned int v, int shift, int bits)
{
static unsigned int mul_table[9] = {
0,
0xff/*0b11111111*/, 0x55/*0b01010101*/, 0x49/*0b01001001*/, 0x11/*0b00010001*/,
0x21/*0b00100001*/, 0x41/*0b01000001*/, 0x81/*0b10000001*/, 0x01/*0b00000001*/,
};
static unsigned int shift_table[9] = {
0, 0,0,1,0,2,4,6,0,
};
if (shift < 0)v <<= -shift; elsev >>= shift;
STBI_ASSERT(v < 256); v >>= (8-bits);
STBI_ASSERT(bits >= 0 && bits <= 8); return (int) ((unsigned) v * mul_table[bits]) >> shift_table[bits];
}
{
int bpp, offset, hsz;
unsigned int mr,mg,mb,ma, all_a;
int extra_read;
} stbi__bmp_data;
{
int hsz;
if (stbi__get8(s) != B || stbi__get8(s) != M) return stbi__errpuc(not BMP, Corrupt BMP);
stbi__get32le(s); // discard filesize
stbi__get16le(s); // discard reserved
stbi__get16le(s); // discard reserved
info->offset = stbi__get32le(s);
info->hsz = hsz = stbi__get32le(s);
info->mr = info->mg = info->mb = info->ma = 0;
info->extra_read = 14;
s->img_y = stbi__get16le(s);
} else {
s->img_x = stbi__get32le(s);
s->img_y = stbi__get32le(s);
}
if (stbi__get16le(s) != 1) return stbi__errpuc(bad BMP, bad BMP);
info->bpp = stbi__get16le(s);
if (hsz != 12) {
int compress = stbi__get32le(s);
if (compress == 1 || compress == 2) return stbi__errpuc(BMP RLE, BMP type not supported: RLE);
stbi__get32le(s); // discard sizeof
stbi__get32le(s); // discard hres
stbi__get32le(s); // discard vres
stbi__get32le(s); // discard colorsused
stbi__get32le(s); // discard max important
if (hsz == 40 || hsz == 56) {
if (hsz == 56) {
stbi__get32le(s);
stbi__get32le(s);
stbi__get32le(s);
stbi__get32le(s);
}
if (info->bpp == 16 || info->bpp == 32) {
if (compress == 0) {
if (info->bpp == 32) {
info->mr = 0xffu << 16;info->mg = 0xffu <<8;info->mb = 0xffu <<0;info->ma = 0xffu << 24;info->all_a = 0; // if all_a is 0 at end, then we loaded alpha channel but it was all 0
} else {
info->mr = 31u << 10;info->mg = 31u <<5;info->mb = 31u <<0; }} else if (compress == 3) { info->mr = stbi__get32le(s);
info->mg = stbi__get32le(s);
info->mb = stbi__get32le(s);
info->extra_read += 12;
// not documented, but generated by photoshop and handled by mspaint
if (info->mr == info->mg && info->mg == info->mb) {
// ?!?!?
return stbi__errpuc(bad BMP, bad BMP);
}
} else
return stbi__errpuc(bad BMP, bad BMP);
}
} else {
int i;
if (hsz != 108 && hsz != 124)
return stbi__errpuc(bad BMP, bad BMP);
info->mr = stbi__get32le(s);
info->mg = stbi__get32le(s);
info->mb = stbi__get32le(s);
info->ma = stbi__get32le(s);
stbi__get32le(s); // discard color space
for (i=0; i < 12; ++i)stbi__get32le(s); // discard color space parameters if (hsz == 124) {stbi__get32le(s); // discard rendering intentstbi__get32le(s); // discard offset of profile datastbi__get32le(s); // discard size of profile datastbi__get32le(s); // discard reserved }} } return (void *) 1;}static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri){ stbi_uc *out; unsigned int mr=0,mg=0,mb=0,ma=0, all_a; stbi_uc pal[256][4]; int psize=0,i,j,width; int flip_vertically, pad, target; stbi__bmp_data info; STBI_NOTUSED(ri); info.all_a = 255; if (stbi__bmp_parse_header(s, &info) == NULL)return NULL; // error code already set flip_vertically = ((int) s->img_y) > 0;
s->img_y = abs((int) s->img_y);
if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__errpuc(too large,Very large image (corrupt?));
mg = info.mg;
mb = info.mb;
ma = info.ma;
all_a = info.all_a;
if (info.bpp < 24) psize = (info.offset – info.extra_read – 24) / 3; } else {if (info.bpp < 16) psize = (info.offset – info.extra_read – info.hsz) >> 2;
}
if (psize == 0) {
STBI_ASSERT(info.offset == s->callback_already_read + (int) (s->img_buffer s->img_buffer_original));
if (info.offset != s->callback_already_read + (s->img_buffer s->buffer_start)) {
return stbi__errpuc(bad offset, Corrupt BMP);
}
}
s->img_n = 3;
else
s->img_n = ma ? 4 : 3;
if (req_comp && req_comp >= 3) // we can directly decode 3 or 4
target = req_comp;
else
target = s->img_n; // if they want monochrome, well post-convert
if (!stbi__mad3sizes_valid(target, s->img_x, s->img_y, 0))
return stbi__errpuc(too large, Corrupt BMP);
if (!out) return stbi__errpuc(outofmem, Out of memory);
if (info.bpp < 16) {int z=0;if (psize == 0 || psize > 256) { STBI_FREE(out); return stbi__errpuc(invalid, Corrupt BMP); }
for (i=0; i < psize; ++i) { pal[i][2] = stbi__get8(s); pal[i][1] = stbi__get8(s); pal[i][0] = stbi__get8(s); if (info.hsz != 12) stbi__get8(s); pal[i][3] = 255;}stbi__skip(s, info.offset – info.extra_read – info.hsz – psize * (info.hsz == 12 ? 3 : 4));if (info.bpp == 1) width = (s->img_x + 7) >> 3;
else if (info.bpp == 4) width = (s->img_x + 1) >> 1;
else if (info.bpp == 8) width = s->img_x;
else { STBI_FREE(out); return stbi__errpuc(bad bpp, Corrupt BMP); }
pad = (-width)&3;
if (info.bpp == 1) {
for (j=0; j < (int) s->img_y; ++j) {
int bit_offset = 7, v = stbi__get8(s);
for (i=0; i < (int) s->img_x; ++i) {
int color = (v>>bit_offset)&0x1;
out[z++] = pal[color][0];
out[z++] = pal[color][1];
out[z++] = pal[color][2];
if (target == 4) out[z++] = 255;
if (i+1 == (int) s->img_x) break;
if((bit_offset) < 0) {bit_offset = 7;v = stbi__get8(s); }}stbi__skip(s, pad); }} else { for (j=0; j < (int) s->img_y; ++j) {
for (i=0; i < (int) s->img_x; i += 2) {
int v=stbi__get8(s),v2=0;
if (info.bpp == 4) {
v2 = v & 15;
v >>= 4;
}
out[z++] = pal[v][0];
out[z++] = pal[v][1];
out[z++] = pal[v][2];
if (target == 4) out[z++] = 255;
if (i+1 == (int) s->img_x) break;
v = (info.bpp == 8) ? stbi__get8(s) : v2;
out[z++] = pal[v][0];
out[z++] = pal[v][1];
out[z++] = pal[v][2];
if (target == 4) out[z++] = 255;
}
stbi__skip(s, pad);
}
}
} else {
int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0;
int z = 0;
int easy=0;
stbi__skip(s, info.offset info.extra_read info.hsz);
if (info.bpp == 24) width = 3 * s->img_x;
else if (info.bpp == 16) width = 2*s->img_x;
else /* bpp = 32 and pad = 0 */ width=0;
pad = (-width) & 3;
if (info.bpp == 24) {
easy = 1;
} else if (info.bpp == 32) {
if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000)
easy = 2;
}
if (!easy) {
if (!mr || !mg || !mb) { STBI_FREE(out); return stbi__errpuc(bad masks, Corrupt BMP); }
// right shift amt to put high bit in position #7
rshift = stbi__high_bit(mr)-7; rcount = stbi__bitcount(mr);
gshift = stbi__high_bit(mg)-7; gcount = stbi__bitcount(mg);
bshift = stbi__high_bit(mb)-7; bcount = stbi__bitcount(mb);
ashift = stbi__high_bit(ma)-7; acount = stbi__bitcount(ma);
if (rcount > 8 || gcount > 8 || bcount > 8 || acount > 8) { STBI_FREE(out); return stbi__errpuc(bad masks, Corrupt BMP); }
}
for (j=0; j < (int) s->img_y; ++j) {
if (easy) {
for (i=0; i < (int) s->img_x; ++i) {
unsigned char a;
out[z+2] = stbi__get8(s);
out[z+1] = stbi__get8(s);
out[z+0] = stbi__get8(s);
z += 3;
a = (easy == 2 ? stbi__get8(s) : 255);
all_a |= a;
if (target == 4) out[z++] = a;
}
} else {
int bpp = info.bpp;
for (i=0; i < (int) s->img_x; ++i) {
stbi__uint32 v = (bpp == 16 ? (stbi__uint32) stbi__get16le(s) : stbi__get32le(s));
unsigned int a;
out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount));
out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount));
out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount));
a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255);
all_a |= a;
if (target == 4) out[z++] = STBI__BYTECAST(a);
}
}
stbi__skip(s, pad);
}
}
if (target == 4 && all_a == 0)
for (i=4*s->img_x*s->img_y-1; i >= 0; i -= 4)
out[i] = 255;
stbi_uc t;
for (j=0; j < (int) s->img_y>>1; ++j) {
stbi_uc *p1 = out +j *s->img_x*target;
stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target;
for (i=0; i < (int) s->img_x*target; ++i) {
t = p1[i]; p1[i] = p2[i]; p2[i] = t;
}
}
}
out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y);
if (out == NULL) return out; // stbi__convert_format frees input on failure
}
*y = s->img_y;
if (comp) *comp = s->img_n;
return out;
}
#endif
// by Jonathan Dummer
#ifndef STBI_NO_TGA
// returns STBI_rgb or whatever, 0 on error
static int stbi__tga_get_comp(int bits_per_pixel, int is_grey, int* is_rgb16)
{
// only RGB or RGBA (incl. 16bit) or grey allowed
if (is_rgb16) *is_rgb16 = 0;
switch(bits_per_pixel) {
case 8:return STBI_grey;
case 16: if(is_grey) return STBI_grey_alpha;
// fallthrough
case 15: if(is_rgb16) *is_rgb16 = 1;
return STBI_rgb;
case 24: // fallthrough
case 32: return bits_per_pixel/8;
default: return 0;
}
}
{
int tga_w, tga_h, tga_comp, tga_image_type, tga_bits_per_pixel, tga_colormap_bpp;
int sz, tga_colormap_type;
stbi__get8(s); // discard Offset
tga_colormap_type = stbi__get8(s); // colormap type
if( tga_colormap_type > 1 ) {
stbi__rewind(s);
return 0;// only RGB or indexed allowed
}
tga_image_type = stbi__get8(s); // image type
if ( tga_colormap_type == 1 ) { // colormapped (paletted) image
if (tga_image_type != 1 && tga_image_type != 9) {
stbi__rewind(s);
return 0;
}
stbi__skip(s,4); // skip index of first colormap entry and number of entries
sz = stbi__get8(s);// check bits per palette color entry
if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) {
stbi__rewind(s);
return 0;
}
stbi__skip(s,4); // skip image x and y origin
tga_colormap_bpp = sz;
} else { // normal image w/o colormap only RGB or grey allowed, +/- RLE
if ( (tga_image_type != 2) && (tga_image_type != 3) && (tga_image_type != 10) && (tga_image_type != 11) ) {
stbi__rewind(s);
return 0; // only RGB or grey allowed, +/- RLE
}
stbi__skip(s,9); // skip colormap specification and image x/y origin
tga_colormap_bpp = 0;
}
tga_w = stbi__get16le(s);
if( tga_w < 1 ) {stbi__rewind(s);return 0; // test width}tga_h = stbi__get16le(s);if( tga_h < 1 ) {stbi__rewind(s);return 0; // test height}tga_bits_per_pixel = stbi__get8(s); // bits per pixelstbi__get8(s); // ignore alpha bitsif (tga_colormap_bpp != 0) {if((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16)) {// when using a colormap, tga_bits_per_pixel is the size of the indexes// I don’t think anything but 8 or 16bit indexes makes sensestbi__rewind(s);return 0;}tga_comp = stbi__tga_get_comp(tga_colormap_bpp, 0, NULL);} else {tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3) || (tga_image_type == 11), NULL);}if(!tga_comp) {stbi__rewind(s);return 0;}if (x) *x = tga_w;if (y) *y = tga_h;if (comp) *comp = tga_comp;return 1; // seems to have passed everything}static int stbi__tga_test(stbi__context *s){ int res = 0; int sz, tga_color_type; stbi__get8(s);// discard Offset tga_color_type = stbi__get8(s); // color type if ( tga_color_type > 1 ) goto errorEnd; // only RGB or indexed allowed
sz = stbi__get8(s); // image type
if ( tga_color_type == 1 ) { // colormapped (paletted) image
if (sz != 1 && sz != 9) goto errorEnd; // colortype 1 demands image type 1 or 9
stbi__skip(s,4); // skip index of first colormap entry and number of entries
sz = stbi__get8(s);// check bits per palette color entry
if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd;
stbi__skip(s,4); // skip image x and y origin
} else { // normal image w/o colormap
if ( (sz != 2) && (sz != 3) && (sz != 10) && (sz != 11) ) goto errorEnd; // only RGB or grey allowed, +/- RLE
stbi__skip(s,9); // skip colormap specification and image x/y origin
}
if ( stbi__get16le(s) < 1 ) goto errorEnd;// test width if ( stbi__get16le(s) < 1 ) goto errorEnd;// test height sz = stbi__get8(s); // bits per pixel if ( (tga_color_type == 1) && (sz != 8) && (sz != 16) ) goto errorEnd; // for colormapped images, bpp is size of an index if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd; res = 1; // if we got this far, everything’s good and we can return 1 instead of 0errorEnd: stbi__rewind(s); return res;}// read 16bit value and convert to 24bit RGBstatic void stbi__tga_read_rgb16(stbi__context *s, stbi_uc* out){ stbi__uint16 px = (stbi__uint16)stbi__get16le(s); stbi__uint16 fiveBitMask = 31; // we have 3 channels with 5bits each int r = (px >> 10) & fiveBitMask;
int g = (px >> 5) & fiveBitMask;
int b = px & fiveBitMask;
// Note that this saves the data in RGB(A) order, so it doesnt need to be swapped later
out[0] = (stbi_uc)((r * 255)/31);
out[1] = (stbi_uc)((g * 255)/31);
out[2] = (stbi_uc)((b * 255)/31);
// (possibly if an alpha-bit is set in the image descriptor byte)
// but that only made 16bit test images completely translucent..
// so lets treat all 15 and 16bit TGAs as RGB with no alpha.
}
{
// read in the TGA header stuff
int tga_offset = stbi__get8(s);
int tga_indexed = stbi__get8(s);
int tga_image_type = stbi__get8(s);
int tga_is_RLE = 0;
int tga_palette_start = stbi__get16le(s);
int tga_palette_len = stbi__get16le(s);
int tga_palette_bits = stbi__get8(s);
int tga_x_origin = stbi__get16le(s);
int tga_y_origin = stbi__get16le(s);
int tga_width = stbi__get16le(s);
int tga_height = stbi__get16le(s);
int tga_bits_per_pixel = stbi__get8(s);
int tga_comp, tga_rgb16=0;
int tga_inverted = stbi__get8(s);
// int tga_alpha_bits = tga_inverted & 15; // the 4 lowest bits unused (useless?)
// image data
unsigned char *tga_data;
unsigned char *tga_palette = NULL;
int i, j;
unsigned char raw_data[4] = {0};
int RLE_count = 0;
int RLE_repeating = 0;
int read_next_pixel = 1;
STBI_NOTUSED(ri);
STBI_NOTUSED(tga_x_origin); // @TODO
STBI_NOTUSED(tga_y_origin); // @TODO
if (tga_width > STBI_MAX_DIMENSIONS) return stbi__errpuc(too large,Very large image (corrupt?));
if ( tga_image_type >= 8 )
{
tga_image_type -= 8;
tga_is_RLE = 1;
}
tga_inverted = 1 ((tga_inverted >> 5) & 1);
if ( tga_indexed ) tga_comp = stbi__tga_get_comp(tga_palette_bits, 0, &tga_rgb16);
else tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3), &tga_rgb16);
return stbi__errpuc(bad format, Cant find out TGA pixelformat);
*x = tga_width;
*y = tga_height;
if (comp) *comp = tga_comp;
return stbi__errpuc(too large, Corrupt TGA);
if (!tga_data) return stbi__errpuc(outofmem, Out of memory);
stbi__skip(s, tga_offset );
for (i=0; i < tga_height; ++i) { int row = tga_inverted ? tga_height -i – 1 : i; stbi_uc *tga_row = tga_data + row*tga_width*tga_comp; stbi__getn(s, tga_row, tga_width * tga_comp);} } else{// do I need to load a palette?if ( tga_indexed){ if (tga_palette_len == 0) {/* you have to have at least one entry! */STBI_FREE(tga_data);return stbi__errpuc(“bad palette”, “Corrupt TGA”); } // any data to skip? (offset usually = 0) stbi__skip(s, tga_palette_start ); // load the palette tga_palette = (unsigned char*)stbi__malloc_mad2(tga_palette_len, tga_comp, 0); if (!tga_palette) {STBI_FREE(tga_data);return stbi__errpuc(“outofmem”, “Out of memory”); } if (tga_rgb16) {stbi_uc *pal_entry = tga_palette;STBI_ASSERT(tga_comp == STBI_rgb);for (i=0; i < tga_palette_len; ++i) { stbi__tga_read_rgb16(s, pal_entry); pal_entry += tga_comp;} } else if (!stbi__getn(s, tga_palette, tga_palette_len * tga_comp)) { STBI_FREE(tga_data); STBI_FREE(tga_palette); return stbi__errpuc(“bad palette”, “Corrupt TGA”); }}// load the datafor (i=0; i < tga_width * tga_height; ++i){ // if I’m in RLE mode, do I need to get a RLE stbi__pngchunk? if ( tga_is_RLE ) {if ( RLE_count == 0 ){ // yep, get the next byte as a RLE command int RLE_cmd = stbi__get8(s); RLE_count = 1 + (RLE_cmd & 127); RLE_repeating = RLE_cmd >> 7;
read_next_pixel = 1;
} else if ( !RLE_repeating )
{
read_next_pixel = 1;
}
} else
{
read_next_pixel = 1;
}
// OK, if I need to read a pixel, do it now
if ( read_next_pixel )
{
// load however much data we did have
if ( tga_indexed )
{
// read in index, then perform the lookup
int pal_idx = (tga_bits_per_pixel == 8) ? stbi__get8(s) : stbi__get16le(s);
if ( pal_idx >= tga_palette_len ) {
// invalid index
pal_idx = 0;
}
pal_idx *= tga_comp;
for (j = 0; j < tga_comp; ++j) {raw_data[j] = tga_palette[pal_idx+j]; }} else if(tga_rgb16) { STBI_ASSERT(tga_comp == STBI_rgb); stbi__tga_read_rgb16(s, raw_data);} else { // read in the data raw for (j = 0; j < tga_comp; ++j) {raw_data[j] = stbi__get8(s); }}// clear the reading flag for the next pixelread_next_pixel = 0; } // end of reading a pixel // copy data for (j = 0; j < tga_comp; ++j) tga_data[i*tga_comp+j] = raw_data[j]; // in case we’re in RLE mode, keep counting down –RLE_count;}// do I need to invert the image?if ( tga_inverted ){ for (j = 0; j*2 < tga_height; ++j) {int index1 = j * tga_width * tga_comp;int index2 = (tga_height – 1 – j) * tga_width * tga_comp;for (i = tga_width * tga_comp; i > 0; i)
{
unsigned char temp = tga_data[index1];
tga_data[index1] = tga_data[index2];
tga_data[index2] = temp;
++index1;
++index2;
}
}
}
// clear my palette, if I had one
if ( tga_palette != NULL )
{
STBI_FREE( tga_palette );
}
}
if (tga_comp >= 3 && !tga_rgb16)
{
unsigned char* tga_pixel = tga_data;
for (i=0; i < tga_width * tga_height; ++i){ unsigned char temp = tga_pixel[0]; tga_pixel[0] = tga_pixel[2]; tga_pixel[2] = temp; tga_pixel += tga_comp;} } // convert to target component count if (req_comp && req_comp != tga_comp)tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height); // the things I do to get rid of an error message, and yet keep // Microsoft’s C compilers happy… [8^( tga_palette_start = tga_palette_len = tga_palette_bits = tga_x_origin = tga_y_origin = 0; STBI_NOTUSED(tga_palette_start); // OK, done return tga_data;}#endif// *************************************************************************************************// Photoshop PSD loader — PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB#ifndef STBI_NO_PSDstatic int stbi__psd_test(stbi__context *s){ int r = (stbi__get32be(s) == 0x38425053); stbi__rewind(s); return r;}static int stbi__psd_decode_rle(stbi__context *s, stbi_uc *p, int pixelCount){ int count, nleft, len; count = 0; while ((nleft = pixelCount – count) > 0) {
len = stbi__get8(s);
if (len == 128) {
// No-op.
} else if (len < 128) { // Copy next len+1 bytes literally. len++; if (len > nleft) return 0; // corrupt data
count += len;
while (len) {
*p = stbi__get8(s);
p += 4;
len;
}
} else if (len > 128) {
stbi_uc val;
// Next -len+1 bytes in the dest are replicated from next source byte.
// (Interpret len as a negative 8-bit int.)
len = 257 len;
if (len > nleft) return 0; // corrupt data
val = stbi__get8(s);
count += len;
while (len) {
*p = val;
p += 4;
len;
}
}
}
}
{
int pixelCount;
int channelCount, compression;
int channel, i;
int bitdepth;
int w,h;
stbi_uc *out;
STBI_NOTUSED(ri);
if (stbi__get32be(s) != 0x38425053) // 8BPS
return stbi__errpuc(not PSD, Corrupt PSD image);
if (stbi__get16be(s) != 1)
return stbi__errpuc(wrong version, Unsupported version of PSD image);
stbi__skip(s, 6 );
channelCount = stbi__get16be(s);
if (channelCount < 0 || channelCount > 16)
return stbi__errpuc(wrong channel count, Unsupported number of channels in PSD image);
h = stbi__get32be(s);
w = stbi__get32be(s);
if (w > STBI_MAX_DIMENSIONS) return stbi__errpuc(too large,Very large image (corrupt?));
bitdepth = stbi__get16be(s);
if (bitdepth != 8 && bitdepth != 16)
return stbi__errpuc(unsupported bit depth, PSD bit depth is not 8 or 16 bit);
// Valid options are:
// 0: Bitmap
// 1: Grayscale
// 2: Indexed color
// 3: RGB color
// 4: CMYK color
// 7: Multichannel
// 8: Duotone
// 9: Lab color
if (stbi__get16be(s) != 3)
return stbi__errpuc(wrong color format, PSD is not in RGB color format);
stbi__skip(s,stbi__get32be(s) );
stbi__skip(s, stbi__get32be(s) );
stbi__skip(s, stbi__get32be(s) );
// Known values:
// 0: no compression
// 1: RLE compressed
compression = stbi__get16be(s);
if (compression > 1)
return stbi__errpuc(bad compression, PSD has an unknown compression format);
if (!stbi__mad3sizes_valid(4, w, h, 0))
return stbi__errpuc(too large, Corrupt PSD);
out = (stbi_uc *) stbi__malloc_mad3(8, w, h, 0);
ri->bits_per_channel = 16;
} else
out = (stbi_uc *) stbi__malloc(4 * w*h);
pixelCount = w*h;
//memset( out, 0, pixelCount * 4 );
if (compression) {
// RLE as used by .PSD and .TIFF
// Loop until you get the number of unpacked bytes you are expecting:
// Read the next source byte into n.
// If n is between 0 and 127 inclusive, copy the next n+1 bytes literally.
// Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times.
// Else if n is 128, noop.
// Endloop
// which were going to just skip.
stbi__skip(s, h * channelCount * 2 );
for (channel = 0; channel < 4; channel++) { stbi_uc *p; p = out+channel; if (channel >= channelCount) {
// Fill this channel with default data.
for (i = 0; i < pixelCount; i++, p += 4) *p = (channel == 3 ? 255 : 0); } else {// Read the RLE data.if (!stbi__psd_decode_rle(s, p, pixelCount)) { STBI_FREE(out); return stbi__errpuc(“corrupt”, “bad RLE data”);} }} } else {// We’re at the raw image data.It’s each channel in order (Red, Green, Blue, Alpha, …)// where each channel consists of an 8-bit (or 16-bit) value for each pixel in the image.// Read the data by channel.for (channel = 0; channel < 4; channel++) { if (channel >= channelCount) {
// Fill this channel with default data.
if (bitdepth == 16 && bpc == 16) {
stbi__uint16 *q = ((stbi__uint16 *) out) + channel;
stbi__uint16 val = channel == 3 ? 65535 : 0;
for (i = 0; i < pixelCount; i++, q += 4)*q = val;} else { stbi_uc *p = out+channel; stbi_uc val = channel == 3 ? 255 : 0; for (i = 0; i < pixelCount; i++, p += 4)*p = val;} } else {if (ri->bits_per_channel == 16) {// output bpc
stbi__uint16 *q = ((stbi__uint16 *) out) + channel;
for (i = 0; i < pixelCount; i++, q += 4)*q = (stbi__uint16) stbi__get16be(s);} else { stbi_uc *p = out+channel; if (bitdepth == 16) {// input bpcfor (i = 0; i < pixelCount; i++, p += 4) *p = (stbi_uc) (stbi__get16be(s) >> 8);
} else {
for (i = 0; i < pixelCount; i++, p += 4) *p = stbi__get8(s); }} }} } // remove weird white matte from PSD if (channelCount >= 4) {
if (ri->bits_per_channel == 16) {
for (i=0; i < w*h; ++i) {stbi__uint16 *pixel = (stbi__uint16 *) out + 4*i;if (pixel[3] != 0 && pixel[3] != 65535) { float a = pixel[3] / 65535.0f; float ra = 1.0f / a; float inv_a = 65535.0f * (1 – ra); pixel[0] = (stbi__uint16) (pixel[0]*ra + inv_a); pixel[1] = (stbi__uint16) (pixel[1]*ra + inv_a); pixel[2] = (stbi__uint16) (pixel[2]*ra + inv_a);} }} else { for (i=0; i < w*h; ++i) {unsigned char *pixel = out + 4*i;if (pixel[3] != 0 && pixel[3] != 255) { float a = pixel[3] / 255.0f; float ra = 1.0f / a; float inv_a = 255.0f * (1 – ra); pixel[0] = (unsigned char) (pixel[0]*ra + inv_a); pixel[1] = (unsigned char) (pixel[1]*ra + inv_a); pixel[2] = (unsigned char) (pixel[2]*ra + inv_a);} }} } // convert to desired output format if (req_comp && req_comp != 4) {if (ri->bits_per_channel == 16)
out = (stbi_uc *) stbi__convert_format16((stbi__uint16 *) out, 4, req_comp, w, h);
else
out = stbi__convert_format(out, 4, req_comp, w, h);
if (out == NULL) return out; // stbi__convert_format frees input on failure
}
*y = h;
*x = w;
}
#endif
// Softimage PIC loader
// by Tom Seddon
//
// See http://softimage.wiki.softimage.com/index.php/INFO:_PIC_file_format
// See http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/softimagepic/
static int stbi__pic_is4(stbi__context *s,const char *str)
{
int i;
for (i=0; i<4; ++i)if (stbi__get8(s) != (stbi_uc)str[i]) return 0; return 1;}static int stbi__pic_test_core(stbi__context *s){ int i; if (!stbi__pic_is4(s,”x53x80xF6x34″))return 0; for(i=0;i<84;++i)stbi__get8(s); if (!stbi__pic_is4(s,”PICT”))return 0; return 1;}typedef struct{ stbi_uc size,type,channel;} stbi__pic_packet;static stbi_uc *stbi__readval(stbi__context *s, int channel, stbi_uc *dest){ int mask=0x80, i; for (i=0; i<4; ++i, mask>>=1) {
if (channel & mask) {
if (stbi__at_eof(s)) return stbi__errpuc(bad file,PIC file too short);
dest[i]=stbi__get8(s);
}
}
}
{
int mask=0x80,i;
if (channel&mask)
dest[i]=src[i];
}
{
int act_comp=0,num_packets=0,y,chained;
stbi__pic_packet packets[10];
// for the same channel in multiple packets.
do {
stbi__pic_packet *packet;
return stbi__errpuc(bad format,too many packets);
packet->size= stbi__get8(s);
packet->type= stbi__get8(s);
packet->channel = stbi__get8(s);
if (packet->size != 8)return stbi__errpuc(bad format,packet isnt 8bpp);
} while (chained);
default:
return stbi__errpuc(bad format,packet has bad compression type);
int x;
return 0;
break;
}
{
int left=width, i;
stbi_uc count,value[4];
if (stbi__at_eof(s)) return stbi__errpuc(bad file,file too short (pure read count));
count = (stbi_uc) left;
left -= count;
}
}
break;
int left=width;
while (left>0) {
int count = stbi__get8(s), i;
if (stbi__at_eof(s))return stbi__errpuc(bad file,file too short (mixed read count));
stbi_uc value[4];
count = stbi__get16be(s);
else
count -= 127;
if (count > left)
return stbi__errpuc(bad file,scanline overrun);
return 0;
} else { // Raw
++count;
if (count>left) return stbi__errpuc(bad file,scanline overrun);
return 0;
}
left-=count;
}
break;
}
}
}
}
}
{
stbi_uc *result;
int i, x,y, internal_comp;
STBI_NOTUSED(ri);
if (x > STBI_MAX_DIMENSIONS) return stbi__errpuc(too large,Very large image (corrupt?));
if (!stbi__mad3sizes_valid(x, y, 4, 0)) return stbi__errpuc(too large, PIC image too large to decode);
stbi__get16be(s); //skip `fields
stbi__get16be(s); //skip `pad
result = (stbi_uc *) stbi__malloc_mad3(x, y, 4, 0);
memset(result, 0xff, x*y*4);
STBI_FREE(result);
result=0;
}
*px = x;
*py = y;
if (req_comp == 0) req_comp = *comp;
result=stbi__convert_format(result,4,req_comp,x,y);
}
{
int r = stbi__pic_test_core(s);
stbi__rewind(s);
return r;
}
#endif
// GIF loader public domain by Jean-Marc Lienher simplified/shrunk by stb
typedef struct
{
stbi__int16 prefix;
stbi_uc first;
stbi_uc suffix;
} stbi__gif_lzw;
{
int w,h;
stbi_uc *out; // output buffer (always 4 components)
stbi_uc *background;// The current background as far as a gif is concerned
stbi_uc *history;
int flags, bgindex, ratio, transparent, eflags;
stbi_ucpal[256][4];
stbi_uc lpal[256][4];
stbi__gif_lzw codes[8192];
stbi_uc *color_table;
int parse, step;
int lflags;
int start_x, start_y;
int max_x, max_y;
int cur_x, cur_y;
int line_size;
int delay;
} stbi__gif;
{
int sz;
if (stbi__get8(s) != G || stbi__get8(s) != I || stbi__get8(s) != F || stbi__get8(s) != 8) return 0;
sz = stbi__get8(s);
if (sz != 9 && sz != 7) return 0;
if (stbi__get8(s) != a) return 0;
return 1;
}
{
int r = stbi__gif_test_raw(s);
stbi__rewind(s);
return r;
}
{
int i;
for (i=0; i < num_entries; ++i) {pal[i][2] = stbi__get8(s);pal[i][1] = stbi__get8(s);pal[i][0] = stbi__get8(s);pal[i][3] = transp == i ? 0 : 255; }}static int stbi__gif_header(stbi__context *s, stbi__gif *g, int *comp, int is_info){ stbi_uc version; if (stbi__get8(s) != ‘G’ || stbi__get8(s) != ‘I’ || stbi__get8(s) != ‘F’ || stbi__get8(s) != ‘8’)return stbi__err(“not GIF”, “Corrupt GIF”); version = stbi__get8(s); if (version != ‘7’ && version != ‘9’)return stbi__err(“not GIF”, “Corrupt GIF”); if (stbi__get8(s) != ‘a’)return stbi__err(“not GIF”, “Corrupt GIF”); stbi__g_failure_reason = “”; g->w = stbi__get16le(s);
g->h = stbi__get16le(s);
g->flags = stbi__get8(s);
g->bgindex = stbi__get8(s);
g->ratio = stbi__get8(s);
g->transparent = -1;
if (g->h > STBI_MAX_DIMENSIONS) return stbi__err(too large,Very large image (corrupt?));
stbi__gif_parse_colortable(s,g->pal, 2 << (g->flags & 7), -1);
}
{
stbi__gif* g = (stbi__gif*) stbi__malloc(sizeof(stbi__gif));
if (!stbi__gif_header(s, g, comp, 1)) {
STBI_FREE(g);
stbi__rewind( s );
return 0;
}
if (x) *x = g->w;
if (y) *y = g->h;
STBI_FREE(g);
return 1;
}
{
stbi_uc *p, *c;
int idx;
// and working backwards through an interleaved image would be nasty
if (g->codes[code].prefix >= 0)
stbi__out_gif_code(g, g->codes[code].prefix);
p = &g->out[idx];
g->history[idx / 4] = 1;
if (c[3] > 128) { // dont render transparent pixels;
p[0] = c[2];
p[1] = c[1];
p[2] = c[0];
p[3] = c[3];
}
g->cur_x += 4;
g->cur_x = g->start_x;
g->cur_y += g->step;
g->step = (1 << g->parse) * g->line_size;
g->cur_y = g->start_y + (g->step >> 1);
g->parse;
}
}
}
{
stbi_uc lzw_cs;
stbi__int32 len, init_code;
stbi__uint32 first;
stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear;
stbi__gif_lzw *p;
if (lzw_cs > 12) return NULL;
clear = 1 << lzw_cs; first = 1; codesize = lzw_cs + 1; codemask = (1 << codesize) – 1; bits = 0; valid_bits = 0; for (init_code = 0; init_code < clear; init_code++) {g->codes[init_code].prefix = -1;
g->codes[init_code].first = (stbi_uc) init_code;
g->codes[init_code].suffix = (stbi_uc) init_code;
}
avail = clear+2;
oldcode = -1;
for(;;) {
if (valid_bits < codesize) { if (len == 0) {len = stbi__get8(s); // start new blockif (len == 0) return g->out;
}
len;
bits |= (stbi__int32) stbi__get8(s) << valid_bits; valid_bits += 8;} else { stbi__int32 code = bits & codemask; bits >>= codesize;
valid_bits -= codesize;
// @OPTIMIZE: is there some way we can accelerate the non-clear path?
if (code == clear) {// clear code
codesize = lzw_cs + 1;
codemask = (1 << codesize) – 1;avail = clear + 2;oldcode = -1;first = 0; } else if (code == clear + 1) { // end of stream codestbi__skip(s, len);while ((len = stbi__get8(s)) > 0)
stbi__skip(s,len);
return g->out;
} else if (code <= avail) {if (first) { return stbi__errpuc(“no clear code”, “Corrupt GIF”);}if (oldcode >= 0) {
p = &g->codes[avail++];
if (avail > 8192) {
return stbi__errpuc(too many codes, Corrupt GIF);
}
p->first = g->codes[oldcode].first;
p->suffix = (code == avail) ? p->first : g->codes[code].first;
} else if (code == avail)
return stbi__errpuc(illegal code in raster, Corrupt GIF);
if (!stbi__gif_header(s, g, comp,0)) return 0; // stbi__g_failure_reason set by stbi__gif_header
if (!stbi__mad3sizes_valid(4, g->w, g->h, 0))
return stbi__errpuc(too large, GIF image is too large);
pcount = g->w * g->h;
g->out = (stbi_uc *) stbi__malloc(4 * pcount);
g->background = (stbi_uc *) stbi__malloc(4 * pcount);
g->history = (stbi_uc *) stbi__malloc(pcount);
if (!g->out || !g->background || !g->history)
return stbi__errpuc(outofmem, Out of memory);
// background colour is only used for pixels that are not rendered first frame, after that background
// color refers to the color that was there the previous frame.
memset(g->out, 0x00, 4 * pcount);
memset(g->background, 0x00, 4 * pcount); // state of the background (starts transparent)
memset(g->history, 0x00, pcount);// pixels that were affected previous frame
first_frame = 1;
} else {
// second frame how do we dispose of the previous one?
dispose = (g->eflags & 0x1C) >> 2;
pcount = g->w * g->h;
dispose = 2; // if I dont have an image to revert back to, default to the old background
}
for (pi = 0; pi < pcount; ++pi) {if (g->history[pi]) {
memcpy( &g->out[pi * 4], &two_back[pi * 4], 4 );
}
}
} else if (dispose == 2) {
// restore what was changed last frame to background before that frame;
for (pi = 0; pi < pcount; ++pi) {if (g->history[pi]) {
memcpy( &g->out[pi * 4], &g->background[pi * 4], 4 );
}
}
} else {
// This is a non-disposal case eithe way, so just
// leave the pixels as is, and they will become the new background
// 1: do not dispose
// 0:not specified.
}
memcpy( g->background, g->out, 4 * g->w * g->h );
}
memset( g->history, 0x00, g->w * g->h );// pixels that were affected previous frame
int tag = stbi__get8(s);
switch (tag) {
case 0x2C: /* Image Descriptor */
{
stbi__int32 x, y, w, h;
stbi_uc *o;
y = stbi__get16le(s);
w = stbi__get16le(s);
h = stbi__get16le(s);
if (((x + w) > (g->w)) || ((y + h) > (g->h)))
return stbi__errpuc(bad Image Descriptor, Corrupt GIF);
g->start_x = x * 4;
g->start_y = y * g->line_size;
g->max_x = g->start_x + w * 4;
g->max_y = g->start_y + h * g->line_size;
g->cur_x = g->start_x;
g->cur_y = g->start_y;
// we may not see *any* pixels or the image is malformed;
// to make sure this is caught, move the current y down to
// max_y (which is what out_gif_code checks).
if (w == 0)
g->cur_y = g->max_y;
g->step = 8 * g->line_size; // first interlaced spacing
g->parse = 3;
} else {
g->step = g->line_size;
g->parse = 0;
}
stbi__gif_parse_colortable(s,g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1);
g->color_table = (stbi_uc *) g->lpal;
} else if (g->flags & 0x80) {
g->color_table = (stbi_uc *) g->pal;
} else
return stbi__errpuc(missing color table, Corrupt GIF);
if (!o) return NULL;
pcount = g->w * g->h;
if (first_frame && (g->bgindex > 0)) {
// if first frame, any pixel not drawn to gets the background color
for (pi = 0; pi < pcount; ++pi) {if (g->history[pi] == 0) {
g->pal[g->bgindex][3] = 255; // just in case it was made transparent, undo that; It will be reset next frame if need be;
memcpy( &g->out[pi * 4], &g->pal[g->bgindex], 4 );
}
}
}
}
{
int len;
int ext = stbi__get8(s);
if (ext == 0xF9) { // Graphic Control Extension.
len = stbi__get8(s);
if (len == 4) {
g->eflags = stbi__get8(s);
g->delay = 10 * stbi__get16le(s); // delay 1/100th of a second, saving as 1/1000ths.
if (g->transparent >= 0) {
g->pal[g->transparent][3] = 255;
}
if (g->eflags & 0x01) {
g->transparent = stbi__get8(s);
if (g->transparent >= 0) {
g->pal[g->transparent][3] = 0;
}
} else {
// dont need transparent
stbi__skip(s, 1);
g->transparent = -1;
}
} else {
stbi__skip(s, len);
break;
}
}
while ((len = stbi__get8(s)) != 0) {
stbi__skip(s, len);
}
break;
}
return (stbi_uc *) s; // using 1 causes warning on some compilers
return stbi__errpuc(unknown code, Corrupt GIF);
}
}
}
{
if (stbi__gif_test(s)) {
int layers = 0;
stbi_uc *u = 0;
stbi_uc *out = 0;
stbi_uc *two_back = 0;
stbi__gif g;
int stride;
int out_size = 0;
int delays_size = 0;
memset(&g, 0, sizeof(g));
if (delays) {
*delays = 0;
}
u = stbi__gif_load_next(s, &g, comp, req_comp, two_back);
if (u == (stbi_uc *) s) u = 0;// end of animated gif marker
*x = g.w;
*y = g.h;
++layers;
stride = g.w * g.h * 4;
void *tmp = (stbi_uc*) STBI_REALLOC_SIZED( out, out_size, layers * stride );
if (NULL == tmp) {
STBI_FREE(g.out);
STBI_FREE(g.history);
STBI_FREE(g.background);
return stbi__errpuc(outofmem, Out of memory);
}
else {
out = (stbi_uc*) tmp;
out_size = layers * stride;
}
*delays = (int*) STBI_REALLOC_SIZED( *delays, delays_size, sizeof(int) * layers );
delays_size = layers * sizeof(int);
}
} else {
out = (stbi_uc*)stbi__malloc( layers * stride );
out_size = layers * stride;
if (delays) {
*delays = (int*) stbi__malloc( layers * sizeof(int) );
delays_size = layers * sizeof(int);
}
}
memcpy( out + ((layers 1) * stride), u, stride );
if (layers >= 2) {
two_back = out 2 * stride;
}
(*delays)[layers 1U] = g.delay;
}
}
} while (u != 0);
STBI_FREE(g.out);
STBI_FREE(g.history);
STBI_FREE(g.background);
if (req_comp && req_comp != 4)
out = stbi__convert_format(out, 4, req_comp, layers * g.w, g.h);
return out;
} else {
return stbi__errpuc(not GIF, Image was not as a gif type.);
}
}
{
stbi_uc *u = 0;
stbi__gif g;
memset(&g, 0, sizeof(g));
STBI_NOTUSED(ri);
if (u == (stbi_uc *) s) u = 0;// end of animated gif marker
if (u) {
*x = g.w;
*y = g.h;
// can be done for multiple frames.
if (req_comp && req_comp != 4)
u = stbi__convert_format(u, 4, req_comp, g.w, g.h);
} else if (g.out) {
// if there was an error and we allocated an image buffer, free it!
STBI_FREE(g.out);
}
STBI_FREE(g.history);
STBI_FREE(g.background);
}
{
return stbi__gif_info_raw(s,x,y,comp);
}
#endif
// Radiance RGBE HDR loader
// originally by Nicolas Schulz
#ifndef STBI_NO_HDR
static int stbi__hdr_test_core(stbi__context *s, const char *signature)
{
int i;
for (i=0; signature[i]; ++i)
if (stbi__get8(s) != signature[i])
return 0;
stbi__rewind(s);
return 1;
}
{
int r = stbi__hdr_test_core(s, #?RADIANCE
);
stbi__rewind(s);
if(!r) {
r = stbi__hdr_test_core(s, #?RGBE
);
stbi__rewind(s);
}
return r;
}
static char *stbi__hdr_gettoken(stbi__context *z, char *buffer)
{
int len=0;
char c = ;
) {
buffer[len++] = c;
if (len == STBI__HDR_BUFLEN-1) {
// flush to end of line
while (!stbi__at_eof(z) && stbi__get8(z) !=
)
;
break;
}
c = (char) stbi__get8(z);
}
return buffer;
}
{
if ( input[3] != 0 ) {
float f1;
// Exponent
f1 = (float) ldexp(1.0f, input[3] (int)(128 + 8));
if (req_comp <= 2) output[0] = (input[0] + input[1] + input[2]) * f1 / 3;else { output[0] = input[0] * f1; output[1] = input[1] * f1; output[2] = input[2] * f1;}if (req_comp == 2) output[1] = 1;if (req_comp == 4) output[3] = 1; } else {switch (req_comp) { case 4: output[3] = 1; /* fallthrough */ case 3: output[0] = output[1] = output[2] = 0; break; case 2: output[1] = 1; /* fallthrough */ case 1: output[0] = 0; break;} }}static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri){ char buffer[STBI__HDR_BUFLEN]; char *token; int valid = 0; int width, height; stbi_uc *scanline; float *hdr_data; int len; unsigned char count, value; int i, j, k, c1,c2, z; const char *headerToken; STBI_NOTUSED(ri); // Check identifier headerToken = stbi__hdr_gettoken(s,buffer); if (strcmp(headerToken, “#?RADIANCE”) != 0 && strcmp(headerToken, “#?RGBE”) != 0)return stbi__errpf(“not HDR”, “Corrupt HDR image”); // Parse header for(;;) {token = stbi__hdr_gettoken(s,buffer);if (token[0] == 0) break;if (strcmp(token, “FORMAT=32-bit_rle_rgbe”) == 0) valid = 1; } if (!valid)return stbi__errpf(“unsupported format”, “Unsupported HDR format”); // Parse width and height // can’t use sscanf() if we’re not using stdio! token = stbi__hdr_gettoken(s,buffer); if (strncmp(token, “-Y “, 3))return stbi__errpf(“unsupported data layout”, “Unsupported HDR format”); token += 3; height = (int) strtol(token, &token, 10); while (*token == ‘ ‘) ++token; if (strncmp(token, “+X “, 3))return stbi__errpf(“unsupported data layout”, “Unsupported HDR format”); token += 3; width = (int) strtol(token, NULL, 10); if (height > STBI_MAX_DIMENSIONS) return stbi__errpf(too large,Very large image (corrupt?));
if (width > STBI_MAX_DIMENSIONS) return stbi__errpf(too large,Very large image (corrupt?));
*y = height;
if (req_comp == 0) req_comp = 3;
return stbi__errpf(too large, HDR image is too large);
hdr_data = (float *) stbi__malloc_mad4(width, height, req_comp, sizeof(float), 0);
if (!hdr_data)
return stbi__errpf(outofmem, Out of memory);
// image data is stored as some number of sca
if ( width < 8 || width >= 32768) {
// Read flat data
for (j=0; j < height; ++j) { for (i=0; i < width; ++i) {stbi_uc rgbe[4]; main_decode_loop:stbi__getn(s, rgbe, 4);stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); }} } else {// Read RLE-encoded datascanline = NULL;for (j = 0; j < height; ++j) { c1 = stbi__get8(s); c2 = stbi__get8(s); len = stbi__get8(s); if (c1 != 2 || c2 != 2 || (len & 0x80)) {// not run-length encoded, so we have to actually use THIS data as a decoded// pixel (note this can’t be a valid pixel–one of RGB must be >= 128)
stbi_uc rgbe[4];
rgbe[0] = (stbi_uc) c1;
rgbe[1] = (stbi_uc) c2;
rgbe[2] = (stbi_uc) len;
rgbe[3] = (stbi_uc) stbi__get8(s);
stbi__hdr_convert(hdr_data, rgbe, req_comp);
i = 1;
j = 0;
STBI_FREE(scanline);
goto main_decode_loop; // yes, this makes no sense
}
len <<= 8; len |= stbi__get8(s); if (len != width) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf(“invalid decoded scanline length”, “corrupt HDR”); } if (scanline == NULL) {scanline = (stbi_uc *) stbi__malloc_mad2(width, 4, 0);if (!scanline) { STBI_FREE(hdr_data); return stbi__errpf(“outofmem”, “Out of memory”);} } for (k = 0; k < 4; ++k) {int nleft;i = 0;while ((nleft = width – i) > 0) {
count = stbi__get8(s);
if (count > 128) {
// Run
value = stbi__get8(s);
count -= 128;
if (count > nleft) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf(corrupt, bad RLE data in HDR); }
for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = value; } else {// Dumpif (count > nleft) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf(corrupt, bad RLE data in HDR); }
for (z = 0; z < count; ++z) scanline[i++ * 4 + k] = stbi__get8(s); }} } for (i=0; i < width; ++i)stbi__hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp);}if (scanline) STBI_FREE(scanline); } return hdr_data;}static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp){ char buffer[STBI__HDR_BUFLEN]; char *token; int valid = 0; int dummy; if (!x) x = &dummy if (!y) y = &dummy if (!comp) comp = &dummy if (stbi__hdr_test(s) == 0) { stbi__rewind( s ); return 0; } for(;;) {token = stbi__hdr_gettoken(s,buffer);if (token[0] == 0) break;if (strcmp(token, “FORMAT=32-bit_rle_rgbe”) == 0) valid = 1; } if (!valid) { stbi__rewind( s ); return 0; } token = stbi__hdr_gettoken(s,buffer); if (strncmp(token, “-Y “, 3)) { stbi__rewind( s ); return 0; } token += 3; *y = (int) strtol(token, &token, 10); while (*token == ‘ ‘) ++token; if (strncmp(token, “+X “, 3)) { stbi__rewind( s ); return 0; } token += 3; *x = (int) strtol(token, NULL, 10); *comp = 3; return 1;}#endif // STBI_NO_HDR#ifndef STBI_NO_BMPstatic int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp){ void *p; stbi__bmp_data info; info.all_a = 255; p = stbi__bmp_parse_header(s, &info); stbi__rewind( s ); if (p == NULL)return 0; if (x) *x = s->img_x;
if (y) *y = s->img_y;
if (comp) {
if (info.bpp == 24 && info.ma == 0xff000000)
*comp = 3;
else
*comp = info.ma ? 4 : 3;
}
return 1;
}
#endif
static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp)
{
int channelCount, dummy, depth;
if (!x) x = &dummy
if (!y) y = &dummy
if (!comp) comp = &dummy
if (stbi__get32be(s) != 0x38425053) {
stbi__rewind( s );
return 0;
}
if (stbi__get16be(s) != 1) {
stbi__rewind( s );
return 0;
}
stbi__skip(s, 6);
channelCount = stbi__get16be(s);
if (channelCount < 0 || channelCount > 16) {
stbi__rewind( s );
return 0;
}
*y = stbi__get32be(s);
*x = stbi__get32be(s);
depth = stbi__get16be(s);
if (depth != 8 && depth != 16) {
stbi__rewind( s );
return 0;
}
if (stbi__get16be(s) != 3) {
stbi__rewind( s );
return 0;
}
*comp = 4;
return 1;
}
{
int channelCount, depth;
if (stbi__get32be(s) != 0x38425053) {
stbi__rewind( s );
return 0;
}
if (stbi__get16be(s) != 1) {
stbi__rewind( s );
return 0;
}
stbi__skip(s, 6);
channelCount = stbi__get16be(s);
if (channelCount < 0 || channelCount > 16) {
stbi__rewind( s );
return 0;
}
(void) stbi__get32be(s);
(void) stbi__get32be(s);
depth = stbi__get16be(s);
if (depth != 16) {
stbi__rewind( s );
return 0;
}
return 1;
}
#endif
static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp)
{
int act_comp=0,num_packets=0,chained,dummy;
stbi__pic_packet packets[10];
if (!y) y = &dummy
if (!comp) comp = &dummy
stbi__rewind(s);
return 0;
}
*y = stbi__get16be(s);
if (stbi__at_eof(s)) {
stbi__rewind( s);
return 0;
}
if ( (*x) != 0 && (1 << 28) / (*x) < (*y)) {stbi__rewind( s );return 0; } stbi__skip(s, 8); do {stbi__pic_packet *packet;if (num_packets==sizeof(packets)/sizeof(packets[0])) return 0;packet = &packets[num_packets++];chained = stbi__get8(s);packet->size= stbi__get8(s);
packet->type= stbi__get8(s);
packet->channel = stbi__get8(s);
act_comp |= packet->channel;
stbi__rewind( s );
return 0;
}
if (packet->size != 8) {
stbi__rewind( s );
return 0;
}
} while (chained);
}
#endif
// Portable Gray Map and Portable Pixel Map loader
// by Ken Miller
//
// PGM: http://netpbm.sourceforge.net/doc/pgm.html
// PPM: http://netpbm.sourceforge.net/doc/ppm.html
//
// Known limitations:
//Does not support comments in the header section
//Does not support ASCII image data (formats P2 and P3)
//Does not support 16-bit-per-channel
{
char p, t;
p = (char) stbi__get8(s);
t = (char) stbi__get8(s);
if (p != P || (t != 5 && t != 6)) {
stbi__rewind( s );
return 0;
}
return 1;
}
{
stbi_uc *out;
STBI_NOTUSED(ri);
return 0;
if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__errpuc(too large,Very large image (corrupt?));
*y = s->img_y;
if (comp) *comp = s->img_n;
return stbi__errpuc(too large, PNM too large);
if (!out) return stbi__errpuc(outofmem, Out of memory);
stbi__getn(s, out, s->img_n * s->img_x * s->img_y);
out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y);
if (out == NULL) return out; // stbi__convert_format frees input on failure
}
return out;
}
{
return c == || c == t || c ==
|| c == v || c == f || c == r;
}
{
for (;;) {
while (!stbi__at_eof(s) && stbi__pnm_isspace(*c))
*c = (char) stbi__get8(s);
break;
&& *c != r )
*c = (char) stbi__get8(s);
}
}
{
return c >= 0 && c <= ‘9’;}static intstbi__pnm_getinteger(stbi__context *s, char *c){ int value = 0; while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) {value = value*10 + (*c – ‘0’);*c = (char) stbi__get8(s); } return value;}static intstbi__pnm_info(stbi__context *s, int *x, int *y, int *comp){ int maxv, dummy; char c, p, t; if (!x) x = &dummy if (!y) y = &dummy if (!comp) comp = &dummy stbi__rewind(s); // Get identifier p = (char) stbi__get8(s); t = (char) stbi__get8(s); if (p != ‘P’ || (t != ‘5’ && t != ‘6’)) { stbi__rewind(s); return 0; } *comp = (t == ‘6’) ? 3 : 1;// ‘5’ is 1-component .pgm; ‘6’ is 3-component .ppm c = (char) stbi__get8(s); stbi__pnm_skip_whitespace(s, &c); *x = stbi__pnm_getinteger(s, &c); // read width stbi__pnm_skip_whitespace(s, &c); *y = stbi__pnm_getinteger(s, &c); // read height stbi__pnm_skip_whitespace(s, &c); maxv = stbi__pnm_getinteger(s, &c);// read max value if (maxv > 255)
return stbi__err(max value > 255, PPM image not 8-bit);
else
return 1;
}
#endif
{
#ifndef STBI_NO_JPEG
if (stbi__jpeg_info(s, x, y, comp)) return 1;
#endif
if (stbi__png_info(s, x, y, comp))return 1;
#endif
if (stbi__gif_info(s, x, y, comp))return 1;
#endif
if (stbi__bmp_info(s, x, y, comp))return 1;
#endif
if (stbi__psd_info(s, x, y, comp))return 1;
#endif
if (stbi__pic_info(s, x, y, comp))return 1;
#endif
if (stbi__pnm_info(s, x, y, comp))return 1;
#endif
if (stbi__hdr_info(s, x, y, comp))return 1;
#endif
#ifndef STBI_NO_TGA
if (stbi__tga_info(s, x, y, comp))
return 1;
#endif
return stbi__err(unknown image type, Image not of any known type, or corrupt);
}
{
#ifndef STBI_NO_PNG
if (stbi__png_is16(s))return 1;
#endif
if (stbi__psd_is16(s))return 1;
#endif
}
STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp)
{
FILE *f = stbi__fopen(filename, rb);
int result;
if (!f) return stbi__err(cant fopen, Unable to open file);
result = stbi_info_from_file(f, x, y, comp);
fclose(f);
return result;
}
{
int r;
stbi__context s;
long pos = ftell(f);
stbi__start_file(&s, f);
r = stbi__info_main(&s,x,y,comp);
fseek(f,pos,SEEK_SET);
return r;
}
{
FILE *f = stbi__fopen(filename, rb);
int result;
if (!f) return stbi__err(cant fopen, Unable to open file);
result = stbi_is_16_bit_from_file(f);
fclose(f);
return result;
}
{
int r;
stbi__context s;
long pos = ftell(f);
stbi__start_file(&s, f);
r = stbi__is_16_main(&s);
fseek(f,pos,SEEK_SET);
return r;
}
#endif // !STBI_NO_STDIO
{
stbi__context s;
stbi__start_mem(&s,buffer,len);
return stbi__info_main(&s,x,y,comp);
}
{
stbi__context s;
stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user);
return stbi__info_main(&s,x,y,comp);
}
{
stbi__context s;
stbi__start_mem(&s,buffer,len);
return stbi__is_16_main(&s);
}
{
stbi__context s;
stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user);
return stbi__is_16_main(&s);
}
revision history:
2.20(2019-02-07) support utf8 filenames in Windows; fix warnings and platform ifdefs
2.19(2018-02-11) fix warning
2.18(2018-01-30) fix warnings
2.17(2018-01-29) change sbti__shiftsigned to avoid clang -O2 bug
1-bit BMP
*_is_16_bit api
avoid warnings
2.16(2017-07-23) all functions have 16-bit variants;
STBI_NO_STDIO works again;
compilation fixes;
fix rounding in unpremultiply;
optimize vertical flip;
disable raw_len validation;
documentation fixes
2.15(2017-03-18) fix png-1,2,4 bug; now all Imagenet JPGs decode;
warning fixes; disable run-time SSE detection on gcc;
uniform handling of optional return values;
thread-safe initialization of zlib tables
2.14(2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs
2.13(2016-11-29) add 16-bit API, only supported for PNG right now
2.12(2016-04-02) fix typo in 2.11 PSD fix that caused crashes
2.11(2016-04-02) allocate large structures on the stack
remove white matting for transparent PSD
fix reported channel count for PNG & BMP
re-enable SSE2 in non-gcc 64-bit
support RGB-formatted JPEG
read 16-bit PNGs (only as 8-bit)
2.10(2016-01-22) avoid warning introduced in 2.09 by STBI_REALLOC_SIZED
2.09(2016-01-16) allow comments in PNM files
16-bit-per-pixel TGA (not bit-per-component)
info() for TGA could break due to .hdr handling
info() for BMP to shares code instead of sloppy parse
can use STBI_REALLOC_SIZED if allocator doesnt support realloc
code cleanup
2.08(2015-09-13) fix to 2.07 cleanup, reading RGB PSD as RGBA
2.07(2015-09-13) fix compiler warnings
partial animated GIF support
limited 16-bpc PSD support
#ifdef unused functions
bug with < 92 byte PIC,PNM,HDR,TGA2.06(2015-04-19) fix bug where PSD returns wrong ‘*comp’ value2.05(2015-04-19) fix bug in progressive JPEG handling, fix warning2.04(2015-04-15) try to re-enable SIMD on MinGW 64-bit2.03(2015-04-12) extra corruption checking (mmozeiko) stbi_set_flip_vertically_on_load (nguillemot) fix NEON support; fix mingw support2.02(2015-01-19) fix incorrect assert, fix warning2.01(2015-01-17) fix various warnings; suppress SIMD on gcc 32-bit without -msse22.00b (2014-12-25) fix STBI_MALLOC in progressive JPEG2.00(2014-12-25) optimize JPG, including x86 SSE2 & NEON SIMD (ryg) progressive JPEG (stb) PGM/PPM support (Ken Miller) STBI_MALLOC,STBI_REALLOC,STBI_FREE GIF bugfix — seemingly never worked STBI_NO_*, STBI_ONLY_*1.48(2014-12-14) fix incorrectly-named assert()1.47(2014-12-14) 1/2/4-bit PNG support, both direct and paletted (Omar Cornut & stb) optimize PNG (ryg) fix bug in interlaced PNG with user-specified channel count (stb)1.46(2014-08-26)fix broken tRNS chunk (colorkey-style transparency) in non-paletted PNG1.45(2014-08-16)fix MSVC-ARM internal compiler error by wrapping malloc1.44(2014-08-07)various warning fixes from Ronny Chevalier1.43(2014-07-15)fix MSVC-only compiler problem in code changed in 1.421.42(2014-07-09)don’t define _CRT_SECURE_NO_WARNINGS (affects user code)fixes to stbi__cleanup_jpeg pathadded STBI_ASSERT to avoid requiring assert.h1.41(2014-06-25)fix search&replace from 1.36 that messed up comments/error messages1.40(2014-06-22)fix gcc struct-initialization warning1.39(2014-06-15)fix to TGA optimization when req_comp != number of components in TGA;fix to GIF loading because BMP wasn’t rewinding (whoops, no GIFs in my test suite)add support for BMP version 5 (more ignored fields)1.38(2014-06-06)suppress MSVC warnings on integer casts truncating valuesfix accidental rename of ‘skip’ field of I/O1.37(2014-06-04)remove duplicate typedef1.36(2014-06-03)convert to header file single-file libraryif de-iphone isn’t set, load iphone images color-swapped instead of returning NULL1.35(2014-05-27)various warningsfix broken STBI_SIMD pathfix bug where stbi_load_from_file no longer left file pointer in correct placefix broken non-easy path for 32-bit BMP (possibly never used)TGA optimization by Arseny Kapoulkine1.34(unknown)use STBI_NOTUSED in stbi__resample_row_generic(), fix one more leak in tga failure case1.33(2011-07-14)make stbi_is_hdr work in STBI_NO_HDR (as specified), minor compiler-friendly improvements1.32(2011-07-13)support for “info” function for all supported filetypes (SpartanJ)1.31(2011-06-20)a few more leak fixes, bug in PNG handling (SpartanJ)1.30(2011-06-11)added ability to load files via callbacks to accomidate custom input streams (Ben Wenger)removed deprecated format-specific test/load functionsremoved support for installable file formats (stbi_loader) — would have been broken for IO callbacks anywayerror cases in bmp and tga give messages and don’t leak (Raymond Barbiero, grisha)fix inefficiency in decoding 32-bit BMP (David Woo)1.29(2010-08-16)various warning fixes from Aurelien Pocheville1.28(2010-08-01)fix bug in GIF palette transparency (SpartanJ)1.27(2010-08-01)cast-to-stbi_uc to fix warnings1.26(2010-07-24)fix bug in file buffering for PNG reported by SpartanJ1.25(2010-07-17)refix trans_data warning (Won Chun)1.24(2010-07-12)perf improvements reading from files on platforms with lock-heavy fgetc()minor perf improvements for jpegdeprecated type-specific functions so we’ll get feedback if they’re neededattempt to fix trans_data warning (Won Chun)1.23fixed bug in iPhone support1.22(2010-07-10)removed image *writing* supportstbi_info support from Jetro LauhaGIF support from Jean-Marc LienheriPhone PNG-extensions from James Brownwarning-fixes from Nicolas Schulz and Janez Zemva (i.stbi__err. Janez (U+017D)emva)1.21fix use of ‘stbi_uc’ in header (reported by jon blow)1.20added support for Softimage PIC, by Tom Seddon1.19bug in interlaced PNG corruption check (found by ryg)1.18(2008-08-02)fix a threading bug (local mutable static)1.17support interlaced PNG1.16major bugfix – stbi__convert_format converted one too many pixels1.15initialize some fields for thread safety1.14fix threadsafe conversion bugheader-file-only version (#define STBI_HEADER_FILE_ONLY before including)1.13threadsafe1.12const qualifiers in the API1.11Support installable IDCT, colorspace conversion routines1.10Fixes for 64-bit (don’t use “unsigned long”)optimized upsampling by Fabian “ryg” Giesen1.09Fix format-conversion for PSD code (bad global variables!)1.08Thatcher Ulrich’s PSD code integrated by Nicolas Schulz1.07attempt to fix C++ warning/errors again1.06attempt to fix C++ warning/errors again1.05fix TGA loading to return correct *comp and use good luminance calc1.04default float alpha is 1, not 255; use ‘void *’ for stbi_image_free1.03bugfixes to STBI_NO_STDIO, STBI_NO_HDR1.02support for (subset of) HDR files, float interface for preferred access to them1.01fix bug: possible bug in handling right-side up bmps… not surefix bug: the stbi__bmp_load() and stbi__tga_load() functions didn’t work at all1.00interface to zlib that skips zlib header0.99correct handling of alpha in palette0.98TGA loader by lonesock; dynamically add loaders (untested)0.97jpeg errors on too large a file; also catch another malloc failure0.96fix detection of invalid v value – particleman@mollyrocket forum0.95during header scan, seek to markers in case of padding0.94STBI_NO_STDIO to disable stdio usage; rename all #defines the same0.93handle jpegtran output; verbose errors0.92read 4,8,16,24,32-bit BMP files of several formats0.91output 24-bit Windows 3.0 BMP files0.90fix a few more warnings; bump version number to approach 1.00.61bugfixes due to Marc LeBlanc, Christopher Lloyd0.60fix compiling as c++0.59fix warnings: merge Dave Moore’s -Wall fixes0.58fix bug: zlib uncompressed mode len/nlen was wrong endian0.57fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available
0.56fix bug: zlib uncompressed mode len vs. nlen
0.55fix bug: restart_interval not initialized to 0
0.54allow NULL for int *comp
0.53fix bug in png 3->4; speedup png decoding
0.52png handles req_comp=3,4 directly; minor cleanup; jpeg comments
0.51obey req_comp requests, 1-component jpegs return as 1-component,
on test only check type, not whether we support this variant
0.50(2006-11-19)
first released version
*/
Copyright (c) 2017 Sean Barrett
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the Software), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Reviews
There are no reviews yet.