[Solved] CMSC409 Project 3

$25

File Name: CMSC409_Project_3.zip
File Size: 160.14 KB

SKU: [Solved] CMSC409 Project 3 Category: Tag:
5/5 - (1 vote)

You are given hourly energy consumption data from 5:00AM to 8:00PM in 1-hour interval, for 3 days.

Using this data, predict the energy consumption of the 4th day using a single decision unit (neuron). Note: Create code yourself (no external libraries).

The data is given in 1-hour increments in four text files (please download Pr3_data.zip). The training data for the first 3 days are named train_data_X.txt where X is the date. Use this data for training. In this example, time units are hours and consumption in kW.

Once the decision unit is trained, predict the energy consumption for the 4th date in 1-hour increments from 5:00AM to 8:00PM. Use the testing data to calculate the total error of the prediction. The testing data is in the file test_data_4.txt. (Note: do not use this data for training, the testing data is only for testing.)

Try out the following three single-neuron architectures:

  1. a) b)

c)

Figure 1: Architectures

  • What are the inputs and outputs for this neuron (physical meaning)?
  • Which activation function is used in the three architectures above? Why?
    1. Hint: it should output continuous real values linearly from INF to +INF, not asymptotically ending in 0 and 1).
  • Compare the training and testing total error obtained using the architectures on Figure 1:
    1. Train the decision unit on the data from the first 3 days. Report training total error for each of the three days. Present a graph (original data vs. trained model), similar to the Figure 2.
    2. Predict the energy consumption of the 4th Calculate the total error of your prediction using the data for the 4th date. Report testing total error. Present a graph (original data vs. trained model), similar to the Figure 2.

4) Report the number of iterations, the learning rate, and data pre-processing steps you may have chosen (such as normalization of input data). Clearly explain why you selected these values and steps.

Figure 2: An example of the plot showing training data vs. model predictions

Note:

  1. While training a neuron, you are essentially using a training algorithm to perform polynomial regression for you (to find appropriate values for coefficients weights in this case).
  2. Linear activation function really means summation element.

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
[Solved] CMSC409 Project 3
$25