Homework assignment 1:
- Compute the values for
4
- 3
i=1
5 1i
- i=1 3
n
- 3
i=1
n
- 3
i=3
- n
- 2k + 2k k=0 k=5
- 2i n 2i
- i=0 3 + i=43
n
- (i3 +2i2 i +1)
i=1
- i
- i=5 (4i + 5)
k j
- (i j2 2)
j=0 i=1
m j
- j=1k=1(3C + k 3j +i)
j n k
- l=4 j=1(i 4)
i=1
- Calculate the answer (do not use any calculators) (log3=1.5)
- log4 x= 5 x= ?
- log3 y= 4 y= ?
- x= 72 log7 x= ?
- x= 32 logx= ?
- 2log5 + 4log6 27log35
- 9log32 25log54 36log67 +8log86
210
- log(45 83) log(168) + log(4 2 ) 3
- log(32 643) log(21091282 3 ) 8
- loglog16
- log16log16 Compare your answer with part i.
- log216 Compare your answer with parts j and i.
- log2 log5 625log3 log4 239 + log4 25
- loglog8 log256+log5(32)4log7
- log6 x= 5 logx 6 = ?
- logy x=10 logx y = ?
- log4 32log82 4
- log4 8+log9 27log252125log8316+log4 log256
- Compute the derivative of
a. 5x3 +2x1
- 3x 2 x+x1/2 6x2/3 5
c.
- logxx2 lnx+lnx4
e.
- 3
- Determine the limit of
- lim
x
- lim(1+3)
xx
- lim3xlog x+2
xx3+7x
d.
e.
f.
x
- xx lim2x
x
- lim xx x(2x)
x
- log xlog x
lim x1/5
x
- log4 x3 lim
x
- x+1 lim32xxln2x x
3
- lim logln x(2x)
x
- Compute the exact values for
n
- (2x4 +5 x)dx
- n
1 1
- 1 (x4 3x2 + x x2 )dx
n
3
- (+ lnx+ex)dx
- n
- xexdx
- n
- (xlnx 4lnx)dx
- n
- xsin xdx
1
- Use mathematical induction to prove that
- Use mathematical induction to prove that
Reviews
There are no reviews yet.