[SOLVED] R C algorithm math matlab software network theory 48 11 48(11):125~131 2018 11 PERIODICAL OF OCEAN UNIVERSITY OF CHINA Nov.2018

$25

File Name: R_C_algorithm_math_matlab_software_network_theory_48_11__________48(11):125~131_2018__11__PERIODICAL_OF_OCEAN_UNIVERSITY_OF_CHINA_Nov.2018.zip
File Size: 1299.96 KB

5/5 - (1 vote)

48 11 48(11):125~131 2018 11 PERIODICAL OF OCEAN UNIVERSITY OF CHINA Nov.2018

121121211
(1. 266100;2. 266100)
: NACA4418 MATLAB CFD(Computational Fluid Dynamic) Fluent NACA4418 : ;;;
: T K 7 3 0 : A : 1 6 7 2 -5 1 7 4 (2 0 1 8 )1 1 -1 2 5 -0 7 DOI: 10.16441/j.cnki.hdxb.20160162
: .[J]. ( )201848(11):125-131. YUAN PengWANG Xu-ChaoWANG Shu-Jieet al.Study on optimization of hydrofoil of tidal turbine blade based on ge-
[] ():
netic algorithm J .Periodical of Ocean University of China 2018 4811 125-131.

[1]

Goundar HF-SxFx63137 NACA63815 [9];Bahaj [10];Gras so RFOIL [11];Mol land

(NASA) NACA NACA44
NACA63-2 NACA64-4
1980 XFOIL[12]

NREL-S
[2] (Delft university of tech-
nology) DU [3] RIS
RIS [4]
(F F A ) F F A W [5 ]

CAS-W [6] N P U -W A [7 ] C Q U -A [8]
XFOIL [1 3 ] ; R B F NSGA-II [14]; CFD Fluent NACA [1 5 ]
:(2015GSF115019);(51279191) Supported by the Key Research and Development Project of Shandong Province(2015GSF115019);the National Science Foundation of China(51279191)
:2016-06-22; :2017-05-21
: (1975-) E-mail:[email protected]

126
2 0 1 8
NACA4418 [16] NACA4418
1

1.1
: (1) ; (2) ; [17] (3) 20%; 40 % [18 ]
1.2
: (1) ; (2) ;
(3)
2
[19]
NACA4418 1
1 Fig.1 Flow chart of the hydrofoil design
3

11 : 127
3.1 : Vy =Usin= (1-a)V (6)

aa
a a [21 ] :
[20 ] : = f (x ) = z + e 2 / z
1a(1-a)2 () a=a=2=2 7
(1 ) z
3 9 :r
e1/4 :
e2
x = (l + l )cos

= r (8 )
V
:
e2(2) y=(l- )sin
l :l:
d L = 1 c U 2C L d r 2
l=eexp(()) (3) Taylor ():
( 9 ) ( 1 0 )
dL/dD (9)(10) :
dL=CL (11) dD CD
:CL ;CD (11)
(CL/CD ) :
f(X)= max(CL/CD ) (12)
3 .3
(4)()6:
X = (x 1 x 2 x 3 x 4 x 5 x 6 ) (1 3 ) 3 .4
NACA4418 18 % :
t/c=18% (14) :t ;c
NACA4418 30% :
Lmax =0.30 (15)
:
|S-S0|5% (16) S0
:S ;S0
d D = 1 c U 2C D d r 2
()=m1(1-cos)+n1sin+m2(1-cos)2 + n2sin2+L+mk(1-cos)k +nksink+L
k = 123L (4)
(4 ) = 0 ( ) = 0 mknk
3 .2
CP CP
r 2 V U c
2 Fig.2 Blade element velocity and load diagram
U Vx Vy :
Vx =Ucos=(1+a)r (5)
[22]

128

2 0 1 8
:
Le 3% (17)
[23 ] :
y u 1 y l 1 0 .0 1 (1 8 )
:y u 1 x = 1 y ;y l 1 x = 1y
:
4%w/c6% (19) :w ;c
:
4 5 % L w 5 0 % (2 0 ) 3 .5
[24] 3
3 Fig.3 Flow chart of the hydrofoil optimization and design
4
4.1
NACA4418
MATLAB 4
4 Fig.4 Comparison diagram of the initial hydrofoil and optimized hydrofoil
4.2
C F D N -S
XFOIL en
CFD Fluent
CFD Fluent
Gambit C 5
Fluent 1.5 m/s xy -5~ 25 Standard k- [25]
Standard k-

11
: 129
5NACA4418 Fig.5 The whole grid diagram and the grid partial enlargement diagram of NACA4418hydrofoil

15.351 3 10.489 2 46.35%
7NACA4418 Fig.7 Lift-to-drag ratio comparison diagram of NACA4418and the optimized hydrofoil

5

CFD Fluent
:
[1] . Pareto [J]. 201334(10):1685-1689. Wang LongSong WenpingXu Jianhua.Multipoint Optimization Wind Turbine Airfoils Based on Pareto Genetic Algorithm[J].Ac-
ta Energiae Solaris Sinica201334(10):1685-1689. [2] Tae J KWarn G P.Numerical Investigation of Active Control for An S809 Wind Turbine Airfoil[J].International Journal of Preci-
sion Enginering and Manufacturing201314(6):1037-1041. [3] Timmer W AVan R A.Summary of Delft University Wind Tur-
4 .3
CFD Fluent NA-
CA4418 6 7
6NACA4418 Fig.6 Lift coeficient comparison diagram of NACA4418and the optimized hydrofoil
6 1.017 8
0.863 5 17.87% ;
7
bine dedicated airfoils[J].ASME2003125:488-496.

130
2 0 1 8
[4] Fuglsang PBak C.Development of Riso Wind Turbine Airfoils [J].Wind Energy20047(2):145-162.
[5] Bjork A.Coordinates and Calculations for the FFA-W1-xxxFFA- W2-xxxFFA-W3-xxx Series of Airfoils for HAWTS[R].Swe-
den:FFA1990.
[6 ] . [J ] .
201031(4):589-592. Bai JingyanYang KeLi Hongliet al.Design of the Horizontal Axis Wind Turbine Airfoil Family[J].Journal of Enginering Thermophysics201031(4):589-592.
[7] . [J]. 201334(10):1012-1027. Han ZhonghuaSong WenpingGao Yongwei.Design and Wind- Tunnel Verification of Large-Size Wind Turbine Airfoils[J].Ap-
plied Mathematics and Mechanics201334(10):1012-1027. [8]Wang QChen JPang X Pet al.A New Direct Design Method for the Medium Thicknes Wind Turbine Airfoil[J].Journal of
Fluids and Structures201343:287-301. [9] Goundar J NAhmed M RLe Y H.Numerical and Experimental
Studies on Hydrofoils for Marine Curent Turbines[J].Renewable
Energy201242:173-179. [10] Bahaj A SMoland A FChaplin J R.Power and Thrust Meas-
urements of Marine Curent Turbines under Various Hydrody- namic Flow Conditions in a Cavitation Tunnel and a Towing Tank
[J].Renewable Energy200732(3):407-426. [11] Graso F.Design and Optimization of Tidal Turbine Airfoil[J].
Journal of Aircraft201249(2):636-643.
[12]Mol land A FBahaj A SChaplin J R.Measurements and Predic-
tions of ForcesPresures and Cavitation on 2-D Sections Suitable for Marine Curent Turbines[J].Procedings of the Institution of
Mechanical Enginers2004218(2):127-138.
[13] .
[J]. ( )201542(10):59-64. Ren YiruZhang TiantianZeng Lingbin.Tidal Turbine Hydro- foil Design Method Based on Genetic Algorithm[J].Journal of
Hunan University (Natural Sciences)201542(10):59-64. [14] . –
[J]. 201430(8):65-73. Zhu GuojunFeng JianjunGuo Pengchenget al.Optimization of Hydrofoil for Marine Curent Turbine Based on Radical Basis Function Neural Network and Genetic algorithm[J].Transactions of the Chinese Society of Agricultural Enginering201430(8): 65-73.
[15] . [D]. : 2011.
Wang Jianchao.The Blade Design and Experimental Study on Horizontal Axis Turbine Driven by Tidal Curent Energy[D]. Qingdao:Ocean University of China2011.
[16] . [J].
201230(1):131-136. Li ZuowuChen JiangChen Baoet al.Design of Advanced Air-
foil Families for Wind Turbines[J].Acta Aerodynamica Sinica
201230(1):131-136.
[17] .
[J]. 201436(4):1-5. Yu LongZhang ShijunWu Fengkaiet al.Research & Devel- opment and Optimization Design of Hydrofoil of Marine Curent Turbine[J].Ship Enginering201436(4):1-5.
[18]Wang QWang JChen Jet al.Aerodynamic Shape Optimized Design for Wind Turbine Blade Using New Airfoil Series[J]. Journal of Mechanical Science and Technology201529(7):
2871-2882.
[19] . [D].
: 2 0 1 0 . Bai Jingyan.The Experimental Analysisand Optimal Design of Dedicated Airfoil Family for Horizontal-Axis Wind Turbines[D]. Beijing:Institute of EngineringThermophysicsChinese Acad- emy of Sciences2010.
[20] Abbot Ira HVon Doenhof Albert E.Theory of Wing Sections [M].New York:Dover Publications1959.
[2 1 ] . [J ] . 2 0 1 3 3 4 (1 ) : 1 -6 .
Jiang HaiboCao ShuliangLi Yanru.Optimal Twist and Chord of the Blades of Horizontal Axis Wind Turbine[J].Acta Energiae Solaris Sinica201334(1):1-6.
[22] .CAS [J]. 201334(4):563-567. Huang ChenwuYang KeLiu Qianget al.Roughnes Sensitiv-
ity Analysis and Optimization of CAS Airfoils Used at Outboard Section of Wind Turbine Blade[J].Acta Energiae Solaris Sinica 201334(4):563-567.
[23 ] ShenWZ . [J]. 201233(4):558-563.
Cheng JiangtaoChen JinShen W Zet al.Optimization Design of Airfoil Profiles Based on the Noise of Wind Turbines[J].Acta Energiae Solaris Sinica201233(4):558-563.
[24] . [J]. 200929(20):106-111.
Ju YapingZhang Chuhua.Optimal Design Method for Wind Turbine Airfoil Based on Artificial Neural Network Model and Genetic Algorithm[J].Procedings of the CSEE200929(20):
106-111.
[25] . [J].
201031(2):203-209. Ma LinjingChen JiangDu Ganget al.Numerical Simulation of Aerodynamic Performance for Wind Turbine Airfoils[J].Acta
Energiae Solaris Sinica201031(2):203-20.

11 : 131
Study on Optimization of Hydrofoil of Tidal Turbine Blade Based on Genetic Algorithm
1 2 1 1 2 1 2 1 1 YUAN Peng WANG Xu-Chao WANG Shu-Jie TAN Jun-Zhe SI Xian-CaiBIAN Bing-Bing
(1.Colege of EngineringOcean University of ChinaQingdao 266100China;2.The Key Lab of Ocean Enginering of Shandong ProvinceQingdao 266100China)
Abstract: Hydrofoil profiles of the blades largely determine the performance of the tidal turbine.To get a tidal turbine hydrofoil with higher performanceoptimization was made on a prototype hydrofoil of NACA4418based on analysis of design method and design requirement of tidal turbine.A parameterized model was built with the method of Joukowski conformal transformation and optimization design was made by using the genetic algorithm with the software MATLABin which the global optimal solution was found in that the maximum lift-to-drag ratio as the objective function under seting design variables and constrains.CFD simulation of flow fields around hydrofoil of NACA4418and the one optimized were respectively conducted by using software FLUENT.Comparison of results shows that the lift coef-
ficient and the lift-to-drag ratio were largely raised by optimization. Key words: tidal curent turbine;blade hydrofoil;optimization design;genetic algorithm

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
[SOLVED] R C algorithm math matlab software network theory 48 11 48(11):125~131 2018 11 PERIODICAL OF OCEAN UNIVERSITY OF CHINA Nov.2018
$25