Project Outline
Introduction
1.1) Project objective
1.2) Data source and description
2) Data visualization (ch. 2)
2.1) Include relevant plots
2.2) Plots interpretation
2.3) Recommendations:
2.3.1) Transformations
2.3.2) Simple forecasting methods
3) Simple forecasting models (ch. 3)
3.1) Forecastingmodels
3.2) Model diagnostics
3.3) Forecasts
4) Data exploration (ch. 6)
4.1) Decompositions
4.2) Diagnostics
4.2) Forecasts
4.3) Recommendations
4.3.1) ETS models
4.3.2) ARIMA models
5) Exponentially smoothed models (ch. 7)
5.1) Forecasting models (damped or not)
5.2) Diagnostics
5.3) Forecasts
5.4) Model selection
6) Forecasts using ARIMA (ch. 8)
6.1) Model selection
6.1.1) Using ACF and PACF
6.1.2) Automatic
6.2) Diagnostics
6.3) Stationarity, invertibility, and cyclicity check
6.2.1) Model representation in backshift notation
6.2.2) Solving characteristic equations
6.4) Forecasts
7) Forecasting using auxilliary information
7.1) Predictor(s)
7.2) Regression with ARIMA errors (ch. 9)
7.2.1) Diagnostics
7.2.2) Forecasts
7.3) Vector Autorgressive Regression (ch. 11)
7.3.1) Diagnostics
7.3.2) Forecasts
8) Model comparison
8.1) Forecast accuracy
8.1.2) Validation using training and testing sets
8.1.2) Leave-One-Out Cross-Validation
8.2) Best forecast(s)
9) Conclusion
Only logged in customers who have purchased this product may leave a review.
Reviews
There are no reviews yet.