Introduction to Machine Learning EM algorithm
Prof. Kutty
Generative models
Copyright By Assignmentchef assignmentchef
Gaussian Mixture Model (GMM)
Mixture of Gaussians
image source: Bishop 2006
MLE of GMM with known labels: Example
1.4 -0.625
2.1, 0, 3.5, 1, 1.5, 2.5, 0.5, 0.05,1, 2, 0, 1, 2, 1.1, 0.5, 0.03
Log-Likelihood for GMMs with known labels
!! =$%((,*())
Sso f Maximum log likelihood objective
=$%((|*())%(*()) ! (#$
=$-. / 0)(1 (() 2(),3))4) #$ #$
ln# $! =ln&'( ) *)(- /() 0(%),2%))3%)
#$ %#$ !&
=() *)ln($!%&'(#)(&(!),*!%)) #$ %#$
Gaussian Mixture Model (GMM) Model Parameters
How many independent model parameters in a mixture of 4 spherical Gaussians?
use this link for in-class exercises
https://forms.gle/jqAdK1sSMhcx6zDHA
spherical Gaussian R e c a l l P d f o f ( j ) 2
1 (j) 2 2 2 | | x g | |
P(x | , )= N
D e l l a j
( 2 j2 ) d / 2
Gaussian Mixture Model (GMM) Model Parameters
How many independent model parameters in a mixture of 4 spherical Gaussians?
use this link for in-class exercises
https://forms.gle/jqAdK1sSMhcx6zDHA