- Dataset
- Click the link View All Data Sets on URL http://archive.ics.uci.edu/ml. to get the data sets assigned:
No | Group Members | Dataset [Rows x Columns] | Presentation Slot |
1 | Ayberk mer Altuntabak *Abdulhalik ensinAmela Karmaj | Absenteeism at work [74021] | 14.01.2021Thursday 12.00 12.17 |
2 | Emin Kaan Kadolu *Ayenur YlmazMert Meng | Anuran Calls (MFCCs) [7,19522] | 14.01.2021Thursday 12.20 12.37 |
3 | Mehmet Nusret Odaba *Abbas KutayOrhan Fatih Bayazt | Apartment for rent classified [10,00022] | 14.01.2021Thursday 12.40 12.57 |
4 | Ahmet Enes Gndz *Hakan YalnMuhammed Fethullah Erolu | BLE RSSI Dataset for Indoor localization and Navigation [6,61115] | 14.01.2021Thursday 13.00 13.17 |
5 | Furkan Akman *Burak FidanMustafa Serta ztrk | Codon usage [13,02869] | 14.01.2021Thursday 13.20 13.37 |
6 | Ferihan abuk *Ali Berat etinMuhammed sa Akbaba | Estimation of obesity levels based on eating habits and physical condition [2,11117] | 14.01.2021Thursday 13.40 13.57 |
7 | Halid Seyfullah Sert *Mert lik | Facebook Live Sellers in Thailand [7,05112] | 19.01.2021Tuesday 12.00 12.17 |
8 | Sedanur Kara *Berke ahinSinem Onal | Geo-Magnetic field and WLAN dataset for indoor localisation from wristband and smartphone [153,54025] | 19.01.2021Tuesday 12.20 12.37 |
9 | Diala Jassem M.B.J. *Mnevver Sueda KocatrkNurhande Akyz | Mice Protein Expression [1,08082] | 19.01.2021Tuesday 12.40 12.57 |
10 | Ahmet Hakan Eki *Belgin TatanKevser lde | Motion Capture Hand Postures [78,09538] | 16.01.2021Saturday 12.00 12.17 |
11 | Deniz Arda Grhizin *Can Berk DurmuTarkan Batar | Online Shoppers Purchasing Intention Dataset [12,33018] | 16.01.2021Saturday 12.20 12.37 |
12 | Zahide Gr Tatan *Merve AyerZeynep Naz Akyoku | Sales_Transactions_Dataset_Weekly [81153] | 16.01.2021Saturday 12.40 12.57 |
13 | Cem Gle *Bura AkdenizKadir Hzarc | Shill Bidding Dataset [6,32113] | 16.01.2021Saturday 13.00 13.17 |
14 | lker Fener *Doukan DenizHalil brahim imek | South German Credit (UPDATE) [1,00021] | 16.01.2021Saturday 13.20 13.37 |
15 | Osman Mantc *Buse BatmanFatmanur zdemir | Turkiye Student Evaluation [5,82033] | 16.01.2021Saturday 13.40 13.57 |
- The first students indicated by * sign are the group representatives.
- Learn / Get information about your data.
- Python Platform & Environment
- Get a platform/environment for python work on, if you do not have any. Install it on your computer.
- You may use any libraries you want; however, you should have complete understanding to use and explain it in demo sessions.
- Implement your work with your own code as possible as you can.
- Model Construction: Frequent Pattern Mining & Clustering Analysis
- Do the data preprocessing steps, if required.
- Use your dataset to construct 3 frequent pattern mining models as follows: i) ii) FP-Growth.
- Use your dataset to construct 3 clustering analysis methods as follows:
- i) K-Means. ii)
- Implementation & Model Evaluation
- Implement six algorithms above on your dataset using python.
- Compare the performance and the results of three frequent pattern mining algorithms on your dataset. Discuss the results.
- Compare the performance and the results of three clustering analysis algorithms on your dataset. Discuss the results.
- Compare the performances of your classifiers with performances of the relevant papers given on the site.
- Presentation
- You are going to present your work done online in 12 minutes at the time slot reserved for your group. Group members should equally participate the presentation. See the table above.
- Prepare a presentation file discussing the details of your work done and results of the classifiers.
- Your presentation should contain the following parts at least:
- i) Problem definition ii) Dataset
- Information about the dataset.
- Number of instances, columns, etc.
- Data preprocessing, cleaning
- Missing values, and how you conduct on these.
- Transformations and normalizations.
- Python implementation for each of the 6 algorithms
- IDE/environment used.
- Implementation details.
- Libraries used.
- Model evaluation & performance results
- Performance measures.
- Comparison of all 6 algorithms.
- Conclusion
- Demo with Presentation
- You are going to demonstrate your work done online in 5 minutes after your presentation. See the table above.
- You are going to have 17 minutes in total for your groups session (12 minutes for presentation, and 5 minutes for demonstration).
- Please keep in mind that all the presentation and demo sessions will be recorded.
- All the students should attend all sessions.
- Related Questions & Answers
- Prepare 5 questions and answers related to your topic. These questions may be asked to other students.
- Question types can be multiple choice (single or multiple selection), fill in the blanks, matching, essay, etc.
- Prepare a presentation file with 11 slides consisting these 5 questions and answers. First slide will be used for your topic and group members info. Use 1 slide per each question, and 1 slide per each answer.
- Evaluation
- Your grade related to project #2 will cover 10% of your total grade at least; may increase subject to coronavirus issues.
- Evaluation will be done out of 100 points:
- i) [4 pts] Data set understanding. ii) [4 pts] Data preprocessing. iii) [20 pts] Implementation of frequent pattern algorithms. iv) [20 pts] Implementation of clustering analysis algorithms. v) [14 pts] Results, comparison, discussion & conclusion.
- vi) [20 pts] Presentation quality. vii) [8 pts] Demo quality. viii) [10 pts] Questions & answers quality.
- Submission
- You are going to submit the followings:
- Python codes implemented.
- Presentation file.
- You are going to submit the followings:
- Questions & answers presentation file.
- Write the following sentence in a text file: We hereby swear that the work done on this project is totally our own; and on our honor, we have neither given nor received any unauthorized and/or inappropriate assistance for this project. We understand that by the school code, violation of these principles will lead to a zero grade and is subject to harsh discipline issues. Rename it as we_swear.txt and include this file in the zip submission file.
- Only one of the group members (i.e. group representative, in short GrRep) is going to submit the project using GrReps info all the time. However, all group members should have a complete and comprehensive understanding of all the work done for all tasks and steps of the project.
- Zip all your documents into a single file using filename GrRepStudentNumber_P2.zip (e.g. 150118123_P2.zip) and submit it to the site http://ues.marmara.edu.tr before deadline.
- In case of any form of copying and cheating on solutions, all parts will get ZERO points. You should submit your own work. In case of any forms of cheating or copying, both giver and receiver are equally culpable and suffer equal penalties. All types of plagiarism will result in zero points from the homework.
- If case of using your handwriting, your handwriting should be readable, clear and neat. If possible, do not use any handwriting.
- Do not send project submissions through e-mail. E-mail attachments will not be accepted as valid submissions.
- You are responsible for making sure you are turning in the right file, and that it is not corrupted in anyway. We will not allow resubmissions if you turn in the wrong file, even if you can prove that you have not modified the file after the deadline.
- Grade evaluation may be done on selected parts of the project, so try to complete all parts of your project successfully.
- No late submissions will be accepted.
Reviews
There are no reviews yet.