, , , , , ,

[SOLVED] FN3142 Quantitative Finance Summer 2020 Matlab

$25

File Name: FN3142_Quantitative_Finance_Summer_2020_Matlab.zip
File Size: 433.32 KB

5/5 - (1 vote)

FN3142 Quantitative Finance

Summer 2020

Question 1

Consider the following ARMA(1) process:

zt  = √ + Qzt-1 + εt + θεt-1 ,                                            (1)

where εt  is a zero-mean white noise process with variance σ 2 , and assume  j Qj , jθj  <  1  and Q + θ ≠ 0, which together make sure zt  is covariance stationary.

(a) [20 marks] Calculate the conditional and unconditional means of zt , that is, Et-1  [zt] and E [zt].

(b) [20 marks] Set Q = 0.  Derive the autocovariance and autocorrelation function of this process for all lags as functions of the parameters θ and σ .

(c) [30 marks] Assume now Q ≠ 0.  Calculate the conditional and unconditional variances of zt , that is, V art-1  [zt] and Var [zt].

Hint:  for the unconditional variance, you might want to start by deriving the uncondi- tional covariance between the variable and the innovation term, i.e., Cov [zt , εt] .

(d) [30 marks] Derive the autocovariance and autocorrelation for lags of 1 and 2 as functions of the parameters of the model.

Hint:  use the hint of part (c) .

Question 2

(a) [20 marks] Explain in your own words how one can conduct an unconditional coverage backtest for whether a Value-at-Risk measure is optimal, and relate this test to the so-called “violation ratio.”

(b)  [20 marks] Suppose that after we have built the hit variable Hitt(i)  =  1{rt   ≤  Var t(-i)},i =  1, 2, for two particular Value-at-Risk measures Var t(-1)  and Var t(-2), the following simple regressions are run, with the standard errors in parentheses corresponding to the parameter estimates:

Hitt(1) = 0.06151 + ut        (0.00432)

Hitt(2) = 0.04372 + ut        (0.00589)

Describe how the above regression outputs can be used to test the accuracy of the VaR forecasts. Do these regression results help us decide which model is better? Explain.

(c) [20 marks] Using your own words, describe the conditional coverage backtest proposed by Christofersen (1998) based on the fact that the hit variable is i.i.d.  Bernoulli(Q), where Q is the critical level, under the null hypothesis that the forecast of the conditional Value-at-Risk measure VaRt  is optimal.

(d) [20 marks] Give an example of a sequence of hits for a 5% VaR model, which has the correct unconditional coverage but incorrect conditional coverage.

(e)  [20 marks] Discuss at least two approaches to VaR forecasting to deal with skewness and/or kurtosis of the conditional distribution of asset returns.

Question 3

Answer all five sub-questions.

(a) [20 marks] What is the definition of market efficiency for a fixed horizon? Is it possible to have deviations from efficiency in a market that is efficient? Explain.

(b) [20 marks] Describe collective data snooping and individual data snooping in your own words, and briefly discuss the diferences between them.

(c) [20 marks] Forecast optimality is judged by comparing properties of a given forecast with those that we know are true.  An optimal forecast generates forecast errors which, given a loss function, must obey some properties.  Under a mean-square-error loss function, what three properties must the optimal forecast error et+hjt  = Yt+h – Y(ˆ)thjt for a horizon h possess?

For the remaining two sub-questions of the exercise, consider a forecast Y(ˆ)t+1jt   of a variable Yt+1 . You have 100 observations of Y(ˆ)t+1jt and Yt+1, and decide to run the following regression:

Yt+1  = Q + βY(ˆ)t+1jt + ετ

The results you obtain are given in Table I:

Estimate

Std Error

Q

β

-0.0081 1.6135

0.0052 0.2399

           Table I. Regression results

(d) [20 marks] What null hypothesis should we setup in order to test for forecast optimality? Can this test be conducted with the information given?

(e) [20 marks] Explain what can be inferred from Table I.

Question 4

The probability density function of the normal distribution is given by

where µ is the mean and σ 2  is the variance of the distribution.

(a) [20 marks] Assuming that µ = 0, derive the maximum likelihood estimate of σ 2   given the sample of i.i.d data (x1 , x2, . . . , xT ).

(b) [20 marks] Now assume that xt  is conditionally normally distributed as N(0, σt(2)), where

σt(2) = ω + βσt(2)-1 + αxt(2)-1

Write down the likelihood function for this model given a sample of data (x1 , x2, . . . , xT ).

(c)  [15 marks] Describe how we can obtain estimates for {ω, α, β}  for the GARCH(1,1) model and discuss estimation di culties.

(d) [20 marks] Describe in your own words what graphical method and formal tests you can use to detect volatility clustering.

(e) [25 marks] Describe the RiskMetrics exponential smoother model for multivariate volatil- ity, and discuss the pros and cons of the constant conditional correlation model of Bollerslev (1990) versus the RiskMetrics approach.

 

 

 

Shopping Cart

No products in the cart.

No products in the cart.

[SOLVED] FN3142 Quantitative Finance Summer 2020 Matlab
$25