, , , , , , , , ,

[SOLVED] MSc/MEng Data Mining and Machine Learning 2024 Lab 3 Speech Recognition using HTK R

$25

File Name: MSc/MEng_Data_Mining_and_Machine_Learning_2024_Lab_3__Speech_Recognition_using_HTK_R.zip
File Size: 791.28 KB

5/5 - (1 vote)

MSc/MEng Data Mining and Machine Learning (2024)

Lab 3 – Speech Recognition using HTK

Introduction

The purpose of this laboratory is to familiarise you with automatic speech recognition.  You will use the Hidden Markov Model Toolkit (HTK) to build a connected digit recognition system which takes an acoustic speech signal as input, performs training of the HMM for each digit and evaluate the performance of the system on a provided dataset.  The entire HTK consists of several tools (exe-files), each performing a specific operation, e.g., feature extraction, HMM training, etc.  Each tool is executed in the Command Prompt window by typing its name together with passing all the required  input  parameters.    The  exe-files  of  the   individual   HTK  tools  are   included   in  the LabASR.zip file to be downloaded from Canvas.  The zip-file also includes the manual for the HTK software – the manual is big but you are going to need it only occasionally and only as a reference in order to find out the meaning of (some of) the input/output parameters which are passed when using a specific HTK tool.

Getting started

Download the zip-file LabASR.zip from Canvas to your drive.  Open the zip-file and copy the entire directory structure to your drive.   Run  the  Command  Prompt Window by going to the Windows Start menu and typing ‘ cmd’ (no quotes).  Use the ‘ cd’ command to set your directory to the place you copied the unzipped file.  You are now set to start running some HTK tools.

Dataset

The dataset used in the laboratory contains recording of spoken digit sequences, where a digit is one of the following: one, two, three, four, five, six, seven, eight, nine, zero, oh.  The recordings are stored in .wav format.  The first letter in the filename of each .wav file indicates whether the

recording is from a male (M) or a female (F) speaker.  The data is split into training part (folder TRAIN) and testing part (folder TEST).  In each (train/test) part, there is a set of clean (noise-free) recordings (folder CLEAN1) and a set of recordings corrupted by an additive noise (i.e., noise signal added to the clean signal) at the signal-to-noise ratio (SNR) of 15 dB  and  10 dB (folder N1 SNR15, N1_SNR10,  respectively).  The additive noise illustrates the effect of a background ambient noise in practice.

Viewing the signal

In this initial exercise you will practice the use of the HList tool.  This tool allows you to view wav-files or files containing features extracted from wav-files  (the feature  extraction  can  be performed using the HCopy tool which will be the subject of the next section).  Typing the below gives the values of samples in the wav-file and these are stored in the file logHList_wav:

HTK3.2bin\HList -h -C config/config_HList_wav

dataAurora2/wavLabDMML/TRAIN/CLEAN1/FAC_13A.wav > logHList_wav

You can examine the file containing the MFCC features (after you have created them as described in the next section) by typing:

HTK3.2bin\HList -h -C config/config_HList_mfcc

dataAurora2/specLabDMML/TRAIN/CLEAN1/FAC_13A.mfcc > logHList_mfcc

Feature extraction

The HCopy tool enables to extract a sequence of feature vectors from a given wav-file.   It  is capable  of extracting several  different types  of features,  e.g.,  logarithm  filter-bank  energies, MFCCs, etc.  By typing the below, you can convert the MAE_12A.wav file into a file with the same name but extension  .mfcc which contains the MFCC features (note that the feature file will be located in a different directory):

HTK3.2bin\HCopy -C config/config_HCopy_MFCC_E

dataAurora2/wavLabDMML/TRAIN/CLEAN1/FAC_13A.wav

dataAurora2/specLabDMML/TRAIN/CLEAN1/FAC_13A.mfcc

The HCopy tool can be used to extract features for a set of files listed in a given text-file.  This can be         performed         by         using         the          HCopy    as          below,          where         the listTrainHCopy_LabDMML_CLEAN1.scp is a text-file containing the list of files (with a full path) to be processed.  This file is located in the list directory.  Open and view this file and you can see that each line contains name of two files (with a full path) – the first is the file to be used as the input and the second is the file to be used as the output.  You will need to modify the path here to be the path where your data are located.  After you have done the path modifications, type:

HTK3.2bin\HCopy -C config/config_HCopy_MFCC_E –S

list/listTrainHCopy_LabDMML_CLEAN1.scp

The option -S is used to specify a script. file name (listTrainHCopy_LabDMML_CLEAN1.scp) that contains the list of files to be converted.

Building the digit recognition system – parameter set-up

In the previous section, we have converted a set of wav-files into files containing the features. Now, you start to build your digit recognition system.  You will need the following:

–     Vocabulary list – file wordList_noSP located under the lib directory – this contains the list of words the recogniser is going to be able to recognise.  A model will be built for each vocabulary word.

–     Dictionary (or pronunciation model) – file wordDict located under the lib directory – this defines the mapping of words to acoustic units, i.e., how model of each vocabulary word is built using a single (or a sequence of concatenated) HMMs.  Since we are using in this  example  HMMs  of  whole  words,  the   dictionary  contains  a   repetition  of  each vocabulary word.  Note that this would be different in a case of building HMMs of each phoneme.

–     Language model (or grammar) – file wordNetwork located under the lib directory – this defines (in a specific format) the set of possible sentences that can be recognised, as well as  their  relative  prior  probabilities.     If  needed,  it  can  be  written  by  hand  or  more conveniently using the tool HParse.

–     Features  extracted  for  the  training  /  testing  data –  are  located  under  dataAurora2 directory.

–     Label files for the training / testing data – file label_LabDMML_noSP.mlf located under the label directory is to be used in the first instance.  You can open this text file and see that it contains the labels (i.e., transcription of what have been spoken in terms of the digits) for all the training data.

–     Prototype HMM – file proto_s1d13_st8m1_LabDMML_MFCC_E located under the lib directory.  You can open this text file and see that it contains a definition of the type of HMM to be used – it defines the dimension of the features, the number of states in the HMM, initial values for means, variances and weights for each state (these values are indicative  only  –  they  inform  about  the  structure  of  the  HMM),  and  the  transition probability   matrix  which  determines  the   possible  transitions   between  states  (the transitions assigned to zero will not be possible).

–     Configuration file for the individual tools – each tool may have different configuration file (containing the parameters of the processing to be performed).

Building the digit recognition system – training the HMMs

1.  Create the directory hmm0 under hmmsTrained.  The initial parameters of HMMs are going to be estimated using the tool HCompV.   By executing the following, the initially trained HMM parameters   will   be   located   in   the   file   hmmdef (and   vFloors)   under   the   directory hmmsTrained/hmm0.        Note     that    you    will     need    to     modify    the     path    in     the listTrainFullPath_LabDMML_CLEAN1.scp file.

HTK3.2bin\HCompV -C config/config_train_MFCC_E -o hmmdef -f 0.01 -m -S

list/listTrainFullPath_LabDMML_CLEAN1.scp -M hmmsTrained/hmm0

lib/proto_s1d13_st8m1_LabDMML_MFCC_E

2.  Now you will create 2 files (could be done manually but you are provided exe-files which do the work automatically for you).

Type the below – it will create file with name models containing the HMM definition of all the 11 digits and the silence model.  The models file could be created manually by simply copying the  content  of  hmmdef several times  (for  each  vocabulary  unit)  and  replacing  the  name according to the vocabulary.

HTK3.2bin\models_1mixsil hmmsTrained/hmm0/hmmdef hmmsTrained/hmm0/models

Type the below, which creates the so-called macro-file having basically the same content as the   file vFloors but slightly modified structure.  The value 13 indicates the dimension and MFCC_E the type of features – you will need to modify these when using different features/dimension.

HTK3.2bin\macro 13 MFCC_E hmmsTrained/hmm0/vFloors hmmsTrained/hmm0/macros

3.  The next step is to run several iterations of the Baum-Welch training procedure.  This can be done using the tool HERest.  Among the input parameters for this tool is the input directory containing the current HMM parameters (which is now hmmsTrained/hmm0) and the output directory    containing     the      new     re-estimated     HMM     parameters     (which     is     now hmmsTrained/hmm1).  Thus, you need to create the new directory hmm1 and then run:

HTK3.2bin\HERest -C config/config_train_MFCC_E -I

label/label_LabDMML_noSP.mlf -t 250.0 150.0 1000.0 -S

list/listTrainFullPath_LabDMML_CLEAN1.scp -H hmmsTrained/hmm0/macros -H

hmmsTrained/hmm0/models -M hmmsTrained/hmm1 lib/wordList_noSP

Altogether,  perform.  three  iterations  of  the  HERest.    Before  each  iteration,  make  a  new directory (hmm1, hmm2, and hmm3) where the newly trained HMMs are going to be stored.  At each iteration, you should not forget to change the corresponding input and output directory names in the above HERest command – use the output directory from the current iteration as the input directory in the next iteration.

4.  Now create two new directories hmm4 and hmm5. Then copy the content of the directory hmm3 into the hmm4 directory.

5.  Create the model for a short-pause sp by performing the two commands as below:

HTK3.2bin\spmodel_gen hmmsTrained/hmm3/models hmmsTrained/hmm4/models

HTK3.2bin\HHEd -H hmmsTrained/hmm4/macros -H hmmsTrained/hmm4/models -M

hmmsTrained/hmm5 lib/tieSILandSP_LabDMML.hed lib/wordList_withSP

6.  Perform another three iterations of the HERest (with sp this time) – before each iteration, make a new directory where the newly trained HMMs will be stored.

HTK3.2bin\HERest -C config/config_train_MFCC_E -I

label/label_LabDMML_withSP.mlf -t 250.0 150.0 1000.0 -S

list/listTrainFullPath_LabDMML_CLEAN1.scp -H hmmsTrained/hmm5/macros -H

hmmsTrained/hmm5/models -M hmmsTrained/hmm6 lib/wordList_withSP

Training finished! – you have now obtained trained models of digits in the folder hmm8, each modelled by 10 state HMM with a single Gaussian PDF with diagonal covariance matrices.  Let’s go to do testing (recognition).

Building the digit recognition system – recognition

1.  The tool HVite is to be used for testing of the recognition system.  This performs the Viterbi decoding  and  gives  the  sequence  of  models  which  are  most  likely  to  produce  the  given unknown utterance.  Among the input parameters to the HVite tool are the trained HMMs and the list of testing utterances (from the testing data directory).   First, you need to extract features from the testing wav-files using the HCopy tool as described at the beginning of the lab (when you created features for the training utterances).  Then, you can run the Viterbi decoding using:

HTK3.2bin\HVite -H hmmsTrained/hmm8/macros -H hmmsTrained/hmm8/models -S

list/listTestFullPath_LabDMML_CLEAN1.scp -C config/config_test_MFCC_E -w

lib/wordNetwork -i result/result.mlf -p 0 -s 0.0 lib/wordDict

lib/wordList_withSP

2.  Tool HResults is to be used for analysing the results of the HVite and providing the final recognition accuracy of the system.  The -e option will cause that sil and sp models will be omitted from counts for the overall recognition performance.

HTK3.2bin\HResults -e “???” sil -e “???” sp -I label/labelTest_LabDMML.mlf

lib/wordList_withSP result/result.mlf >> result/recognitionFinalResult.res

HResults provides results on sentence (SENT) level and Word (WORD) level – these indicate how well the entire sentences or words were recognised.  In the results, the ‘H’, ‘D’, ‘S’, ‘I’, and

‘N’  denote  the   number  of  hits,  deletions,  substitutions,  insertions  and  total   number  of words/sentences, respectively.  If there is a large difference between the number of deletions (‘D’) and insertions (‘I’), this indicates that the recognition system is not well balanced.  To improve this balance, there is a parameter referred to as -p flag in the HVite command – this is word insertion penalty (WIP), a penalty on transiting from one model to other model.  The WIP can be used to balance the number of deletions and insertions.   If needed, change the value from 0 to some other positive or negative value (e.g., in steps of 10).

Perl scripts

In the Lab directory in Canvas you can find the file perlScripts_LabASR.zip – this contains several   Perl   scripts   which   in   a   neat   way   incorporate   all  the   above   commands.      The ASR_LabDMML_MFCC_E.pl script does all the above (feature extraction, training and testing) and the ASR_LabDMML_onlyTest_MFCC_E.pl performs testing only (assuming the training has been performed).  You will need to change paths inside the Perl scripts.  Then you can run the first Perl script by typing perl ASR_LabDMML_MFCC_E.pl in the Command Prompt window – it should perform the feature extraction, the entire training and testing.   For  a  reference,  an introduction to Perl is located in the Lab directory in Canvas.

Lab Report Tasks:

For all the tasks below, if needed, modify the –p flag (in HVite) to achieve reasonable balance of the number of deletions and insertions.

1.  Explore the effect of delta and delta-delta features.  Using the provided Perl script, modify the recognition system developed above such that it uses not only the static MFCC features (i.e., MFCC E)  but also the delta and delta-delta features  (i.e., MFCC E D A).   You  will  need  to perform modifications at several places.   In  the  HCopy config  modify the  TARGETKIND to MFCC_E_D_A and set the DELTAWINDOW=3 and ACCWINDOW=2.  The MFCC_E_D_A features will not be 13 dimensional (as were the MFCC_E features) but 39 dimensional – so, you will need to make modifications at places where the feature dimension information appears.  You will also need to modify the TARGETKIND in config_train and config_test and will need to use the proto_s1d39_st8m1_LabDMML_MFCC E D A.  Train the system using the clean training data.  Perform experimental evaluations on clean test data.  Report and discuss your results. [20 marks]

2.  Investigate the effect of using Gaussian mixture state PDF modelling.  Modify the provided Perl scripts (and configuration files) to develop a recognition system that uses the MFCC_E_D_A features and employs 3 Gaussian mixture components per state.  Train the system using the clean training data.  Perform. experimental evaluations on clean testing data and compare the results with those obtained using a single Gaussian per state as obtained from Task 1.  Report and discuss your results. [20 marks]

3.  Explore the effect of noise. [40 marks]

a.     Perform. experimental evaluations of the recognition system developed under Task 2 separately on each provided noisy test data (N1_SNR10, N1_SNR15).

b.    Then  develop  a  new  system  –  this  should  be  as  the system  in Task  2  (i.e.,  using MFCC E D A features  and  3  Gaussian  mixture  components)  but  trained  using  a combined set of all the clean and noisy training data together – to do this, you will need to create a new list file containing all the filenames of all the clean and noisy training data.   Perform evaluations of this system separately on clean and on each noisy test data (N1_SNR10, N1_SNR15).

Report, compare and discuss your results.

4.  Consider that you have available the trained system from Task 3b (in a case you did not do this task you may consider the system from Task 2).  Suggest how you could (in a similar concept as  used  in Task  3b) try to  improve  the  performance  of the  system for ‘female’  speakers. Develop the modified system and perform. suitable experiments on noisy test data  N1_SNR10. Report, compare and discuss your results. [20 marks]

Lab Report Submission

You should  report concisely on each of the above tasks.   Describe clearly what changes you needed to make to perform. the task and discuss the obtained results.  Your report from this lab is expected to be no longer than 7 pages and the submission is through Canvas.  Standard penalty of 5% per day applies for late submissions.

 

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
[SOLVED] MSc/MEng Data Mining and Machine Learning 2024 Lab 3 Speech Recognition using HTK R
$25