A Table of Power Series
1xN+1 2 N 1n 1x =1+x+x ++x 1x= x
n=0
1 = anxn 1 = xrn 1ax 1xr
n=0 n=0
(1+x)r = r xn where m =m(m1)(mk+1) n=0n k k!
1 = n+r1xn
(1x)r n n=0
1+x=
2n (1)n+1 n
e x = x n n=0 n!
x2n+1
= (2n + 1)! n=0
n=0
n 4n(2n1)x
ex +ex x2n cosh(x) = 2 = (2n)!
n=0
sinh(x) =
ex ex 2
Reviews
There are no reviews yet.