[SOLVED] R C algorithm graph statistic network theory DOI:10.13465j.cnki.jvs.2012.13.023

$25

File Name: R_C_algorithm_graph_statistic_network_theory_DOI:10.13465j.cnki.jvs.2012.13.023.zip
File Size: 744.18 KB

5/5 - (1 vote)

DOI:10.13465j.cnki.jvs.2012.13.023

3113JOURNAL OF VIBRATION AND SHOCK Vol. 31 No. 13 2012

210016
: Lamb ;;
: ; ; ; Lamb ;: V214.8 : A
Damage identification of composite structures based on reconstruction algorithm for probabilistic inspection of damage
YAN HongZHOU Li
State Key Laboratory of Mechanicas and Control of Mechanical Structures
Nanjing University of Aeronautics and AstronauticsNanjing 210016China
Abstract: The reconstruction algorithm for probabilistic inspection of damageRAPID was proposed for continuous online monitoring of composite structures based on wavelet analysis and the theory of probability and statistics. The wavelet analysis was applied to extract the features of the Lamb wave signals in both reference and present states on each sensing path. The difference coefficient between the features was taken as a damage indexDI . Thenthe probabilistic method was used to judge whether the DI is caused by the structural damage or the environmental factors. Finallya tomogram generated by the RAPID algorithm was obtained to identify the damage. An experimental study on a composite panel with a 12PZT sensor network was conducted to verify the capability of the RAPID algorithm in damage identification. Experimental results demonstrate that the proposed method is quite feasible and effective for composite structural damage identification. It has certain application value in the practical engineering.
Key words: damage index; wavelet analysis; RAPID; Lamb wave; damage identification
Lamb 12
Lamb
:2008ZA52012 ; 2010JZ004 ;11172128 ; 61161120323
: 20110526 : 201107261986
1963
Phase array 3 CT 4Time reversal 5 Migration 6
H a y 79 C T RAPID LambHay Lamb Lamb

13 :77

1
LambLamb Lamb LambRAPID
1. 1
DIRAPID LambDI
ab
E b a1a2aa1 a2
Gabor
: b2EVD b db
DI 1 b1
b2EV bdb
B
6
1 tb
W Ta bftad t
a
: f ttt
1 t
b1
: VBLamb
VDLamb E ba1 a2b b 1 b 2
VBVD DI0 6
MLamb
VBii1
M1 :
EV
2
VDj :
b2E bdb
B1
f t
10:1 1
ft 2dtCa2da WTab 2db 2
CHeisen berg WTab 2C a2
i1
b1
EV
B1
b2 DI1b1
b dbb db
Bi b
i1M7NLamb
VDj
b2EV bdb
DI2b i11
ab WT ab 2ab Ca2aba a
i 1M 8t
11:

2 :

t EDI1EDI2 9 AB
b1
ft 2dtEbdb 1 WTab2
:
3 Eb Ca da 4
:
A M1N
M1 N
E b b ab:
5
B M2 21 N1 2 2 M1 N2
2
10 : EDI 1EDI 2DI 1DI 2
Eb C a1
a da 2
1a2 WTab 2
ij
1 2 120. 95MN5M1N2

78201231
70.975t0.975 2.369t2. 36 DI
1. 2
RAPID
N
:
N
P xy
Ak 1 R xyxakyakxskysk 11
N
k1 1 1
1 212Lamb 2312LambLamb 663
pi xyk1
2
Fig. 2 Composite panel with a 12sensor network and damage

:

dd
x x2 y y2 aksk aksk
:Rc xyxaya da xsysds daspkxykAk DIk 1 1. 04 1R xy xakyakxskysk 1xy pkxy Ak;Rxyxakyakxskysk xy pkxy 0P xy xy
1Fig. 1 Diagram of affected zone of individual sensing pathsellipse distribution
2
:
2 :350 mm 300 mm 3 mm 100 mm M12
300 kHz 8 MHz 5 000
R xyxak yak xsk ysk
Rcxyxak yak xsk yskRcxyxak yak xsk ysk
Rcxyxakyakxskysk 12
s
ak aksk sk 13
a
xx 2 yy 2xx 2 yy 2
Rc xyxakyakxskysk
das
3
Fig. 3 Diagram of sensing path

1Lamb10 ; 10Lamb 38 411 4
4
Lamb
Fig. 4 Captured Lamb wave signals
of the reference and present states
150450 kHz3 84 115

13 :79
5
Fig. 5 Diagram of local timeenergy density
6 :180.975t0.975 2.1
6tFig. 6 Values of the damage parameter
statistict for all sensing paths
10 7RAPID 8 1831 1528
:
9 :900 mm 480 mm100 mm M12
9
Fig. 9 Stiffened composite panel with a 12sensor network and damage
10
LambFig. 10 Captured Lamb wave signals
11
tFig. 11 Values of the damage parameter
of the reference and present states
statistict for all sensing paths

80201231
11 Lamb10Lamb 26 812 10
18 0. 975 t0. 9752. 111 12

2
3

1.LambJ. 2007284:583589.
2 .
J. 20092:5657.
3Yu LGiurgiu V. Insitu optimized PWAS phased arrays for Lamb wave structural health monitoringJ. Journal of Mechanics of Materials and Structures200723: 459
488.
4Rohde A HVeidt MRose L R Fet al. A computer
simulation study of imaging flexural inhomogeneities using platewave diffraction tomographyJ. Ultrasonics2008 48 1 : 615.
5.J.2 0 0 9 4 51: 18 .
6Zhou LYuan F GMeng W J. A prestack migration method for damage identification in composite structuresJ. Smart Structures and Systems20073 4 : 439454.
7Hay T RRoyer R LGao H Det al. A comparison of embedded sensor Lamb wave ultrasonic tomography approaches for material loss detectionJ. Smart Materials and Structures200615 5 : 946951.
8Zhang X LGao H DZhang G Fet al. Active health monitoring of an aircraft wing with embedded piezoelectric sensoractuator network: I. Defect detectionlocalization and growth monitoringJ. Smart Materials and Structures2007 16 4 : 12081217.
9Wang DYe LLu Yet al. Probability of the presence of damage estimated from an active sensor network in a composite panel of multiple stiffeners J. Composites Science and Technology200969 13 : 20542063.
10 . J. 200114 1 : 99112.
11 Banerjee SRicci FMonaco Eet al. A wave propagation and vibrationbased approach for damage identification in structural componentsJ. Journal of Sound and Vibration 2009332 12 : 167183.
12 Monaco EFranco F. Experimental and numerical activities on damage detection using magnetostrictive actuators and statistical analysisJ. Journal of Intelligent Material Systems and Structures200011: 567578.
12
66Fig. 12 Average values of damage
index for all 66 sensing paths
RAPID 13 3140
35 33
13
Fig. 13 Tomogram generated by the RAPID
algorithm showing the damage location
3
Lamb
1Lamb

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
[SOLVED] R C algorithm graph statistic network theory DOI:10.13465j.cnki.jvs.2012.13.023
$25