[SOLVED] cache x86 (* Content-type: application/vnd.wolfram.mathematica *)

$25

File Name: cache_x86_(*_Content-type:_application/vnd.wolfram.mathematica_*).zip
File Size: 612.3 KB

5/5 - (1 vote)

(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy=Mathematica 12.0 *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158,7]
NotebookDataLength[ 12203,297]
NotebookOptionsPosition[ 11058,270]
NotebookOutlinePosition[ 11398,285]
CellTagsIndexPosition[ 11355,282]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{

Cell[CellGroupData[{
Cell[Lab Week 7, Title,
CellChangeTimes->{{3.822706098827648*^9, 3.822706106430932*^9}, {
3.8239468886690893`*^9,
3.8239468929886217`*^9}},ExpressionUUID->ca359983-38f4-4f7a-a685-
99c62a097f1e],

Cell[TextData[StyleBox[Homework 6, Subtitle]], Text,
CellChangeTimes->{{3.822706112205819*^9, 3.822706119791602*^9}, {
3.823946894896603*^9,
3.823946895320945*^9}},ExpressionUUID->03ac98e9-e199-4728-86d8-
cd8df5a8f94c],

Cell[CellGroupData[{

Cell[Problem 1, Section,
CellChangeTimes->{{3.822706126159574*^9,
3.82270612883962*^9}},ExpressionUUID->bf54f8f1-71f9-44e7-a0bd-
b4a3bf37f7f8],

Cell[TextData[StyleBox[a) Simulate the diffusion of N particles in 2
dimensions with periodic boundary conditions.Visualize the system
trajectory by using animate and creating a histogram for the x-direction.
Devise a method for determining when the system is a equilibrium.How does
noise relate to the diffusion constant?Additionally, leave a comment for
all functions below., Subsection]], Text,
CellChangeTimes->{{3.822706134633354*^9, 3.822706154581642*^9},
3.822739059837325*^9, {3.823816938416851*^9, 3.823816971327691*^9}, {
3.8239469840784807`*^9, 3.823947126784843*^9}, {3.823947186869759*^9,
3.82394720170963*^9}, {3.823947463182878*^9,
3.823947496590643*^9}},ExpressionUUID->2658a4a2-7330-48b1-846e-
9f4cae75174a],

Cell[BoxData[], Input,
CellChangeTimes->{{3.8239470130143547`*^9,
3.823947016525483*^9}},ExpressionUUID->65a76d71-c53e-4565-9a8a-
0a1f74339d7e],

Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{initialAgents, [, n_, ]}], :=,
RowBox[{RandomReal, [,
RowBox[{
RowBox[{NormalDistribution, [,
RowBox[{0, ,, 0.05}], ]}], ,,
RowBox[{{,
RowBox[{n, ,, 2}], }}]}], ]}]}], ;}],
,
RowBox[{
RowBox[{
RowBox[{visualize, [, agents_, ]}], :=,
,
RowBox[{Graphics, [,
RowBox[{
RowBox[{{,
RowBox[{
RowBox[{AbsolutePointSize, [, 10, ]}], ,,
RowBox[{Hue, [,
RowBox[{0.67, ,, 0.6, ,, 0.6}], ]}], ,,
RowBox[{Point, [, agents, ]}]}], }}], ,,
,
RowBox[{ImageSize, ->,
RowBox[{{,
RowBox[{400, ,, 400}], }}]}], ,,
,
RowBox[{AspectRatio, ->, Automatic}], ,,
,
RowBox[{Frame, ->, True}], ,,
,
RowBox[{FrameTicks, ->, False}], ,,
,
RowBox[{Axes, ->, False}], ,,
,
RowBox[{PlotRange, ->,
RowBox[{{,
RowBox[{
RowBox[{{,
RowBox[{
RowBox[{-, 1}], ,, 1}], }}], ,,
RowBox[{{,
RowBox[{
RowBox[{-, 1}], ,, 1}], }}]}], }}]}]}],
, ]}]}],
;}],
,
RowBox[{
RowBox[{
RowBox[{
RowBox[{updateAgents, [,
RowBox[{agents_, ,, noise_}], ]}], :=,
RowBox[{Module, [,
RowBox[{
RowBox[{{, i, }}], ,,
RowBox[{If, [,
RowBox[{
RowBox[{noise, >, 0.}], ,,
RowBox[{Table, [,
RowBox[{
RowBox[{Clip, [,
RowBox[{
RowBox[{
RowBox[{agents, [,
RowBox[{[, i, ]}], ]}], +,
RowBox[{RandomReal, [,
RowBox[{
RowBox[{NormalDistribution, [,
RowBox[{0, ,, noise}], ]}], ,, 2}], ]}]}], ,,

RowBox[{{,
RowBox[{
RowBox[{-, 1}], ,, 1}], }}]}], ]}], ,,
RowBox[{{,
RowBox[{i, ,,
RowBox[{Length, [, agents, ]}]}], }}]}], ]}], ,,
, agents}], ]}]}],
, ]}]}], ;}],
[IndentingNewLine],
RowBox[{(*, , Parameters, , *)}]}], [IndentingNewLine],
RowBox[{
RowBox[{numSteps, , =, , 100000}],
;}], [IndentingNewLine],
RowBox[{
RowBox[{numParticles, , =, , 100}],
;}], [IndentingNewLine],
RowBox[{
RowBox[{DD, , =, , 0.01}], ;}], [IndentingNewLine],
RowBox[{
RowBox[{myAgents, , =, ,
RowBox[{ConstantArray, [,
RowBox[{0, ,, numSteps}], ]}]}], ;}], [IndentingNewLine],
RowBox[{
RowBox[{
RowBox[{
RowBox[{myAgents, [,
RowBox[{[, 0, ]}], ]}], , =, ,
RowBox[{initialAgents, [, numParticles, ]}]}], ;}],
[IndentingNewLine]}], [IndentingNewLine],
RowBox[{For, [,
RowBox[{
RowBox[{t, =, 1}], ,, ,
RowBox[{t, <“, “numSteps”}], “,”, ” “,RowBox[{“t”, “++”}], “,”, “[IndentingNewLine]”,RowBox[{RowBox[{ RowBox[{“myAgents”, “[“, RowBox[{“[“, “t”, “]”}], “]”}], ” “, “=”, ” “,RowBox[{“updateAgents”, “[“, RowBox[{ RowBox[{“myAgents”, “[“, RowBox[{“[“,RowBox[{“t”, ” “, “-“, ” “, “1”}], “]”}], “]”}], “,”, ” “, “DD”}], “]”}]}], “;”}]}], “[IndentingNewLine]”, “]”}]}], “Input”, CellChangeTimes->{{3.823823258491226*^9, 3.82382325961141*^9}, {
3.823824810418147*^9, 3.823824813084709*^9}, {3.823824891505232*^9,
3.823824896078597*^9}, {3.823824933035413*^9, 3.823825146527771*^9}, {
3.823825345497595*^9, 3.823825376084662*^9}, {3.8238254432157917`*^9,
3.823825578056011*^9}, {3.8238256864752197`*^9, 3.823825692067996*^9}, {
3.823825731222021*^9, 3.823825773769854*^9}, {3.823825807284655*^9,
3.823825812085175*^9}, {3.82382588875665*^9, 3.823825927925229*^9}, {
3.823825998878051*^9, 3.823826030543096*^9}, {3.823826131734275*^9,
3.8238262049439917`*^9}, {3.823826296059133*^9, 3.82382639391203*^9},
3.823826457550797*^9, {3.8238265690225143`*^9, 3.823826570540267*^9}, {
3.823826615185136*^9, 3.823826662134515*^9}, {3.8238266982578573`*^9,
3.8238267103313503`*^9}, {3.8238267405434017`*^9, 3.82382678099257*^9}, {
3.823826883068468*^9, 3.82382690898139*^9}, 3.82382697148944*^9,
3.823946924201337*^9},ExpressionUUID->d484a686-8c35-4e5e-a0f2-
e9b793740d4f],

Cell[CellGroupData[{

Cell[BoxData[
RowBox[{
RowBox[{Animate, [,
RowBox[{
RowBox[{visualize, [,
RowBox[{myAgents, [,
RowBox[{[, t, ]}], ]}], ]}], ,,
RowBox[{{,
RowBox[{t, ,, 0, ,, numSteps, ,, 1}], }}]}], ]}],
}]], Input,
CellChangeTimes->{{3.823823258491226*^9, 3.82382325961141*^9}, {
3.823824810418147*^9, 3.823824813084709*^9}, {3.823824891505232*^9,
3.823824896078597*^9}, {3.823824933035413*^9, 3.823825146527771*^9}, {
3.823825345497595*^9, 3.823825376084662*^9}, {3.8238254432157917`*^9,
3.823825578056011*^9}, {3.8238256864752197`*^9, 3.823825692067996*^9}, {
3.823825731222021*^9, 3.823825773769854*^9}, {3.823825807284655*^9,
3.823825812085175*^9}, {3.82382588875665*^9, 3.823825927925229*^9}, {
3.823825998878051*^9, 3.823826030543096*^9}, {3.823826131734275*^9,
3.8238262049439917`*^9}, {3.823826296059133*^9, 3.82382639391203*^9},
3.823826457550797*^9, {3.8238265690225143`*^9, 3.823826570540267*^9}, {
3.823826615185136*^9, 3.823826662134515*^9}, {3.8238266982578573`*^9,
3.8238267103313503`*^9}, {3.8238267405434017`*^9, 3.82382678099257*^9}, {
3.823826883068468*^9, 3.823826963312007*^9}},
CellLabel->
In[278]:=,ExpressionUUID->365c9f3c-567c-4aa2-ae6a-5e5cf90e89f5],

Cell[BoxData[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`t$$ = 6518, Typeset`show$$ = True,
Typeset`bookmarkList$$ = {}, Typeset`bookmarkMode$$ = Menu,
Typeset`animator$$, Typeset`animvar$$ = 1, Typeset`name$$ =
untitled, Typeset`specs$$ = {{
Hold[$CellContext`t$$], 0, 10000, 1}}, Typeset`size$$ = {
400., {198., 202.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = True, $CellContext`t$286822$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm, Variables :> {$CellContext`t$$ = 0},
ControllerVariables :> {
Hold[$CellContext`t$$, $CellContext`t$286822$$, 0]},
OtherVariables :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$, Typeset`initDone$$,
Typeset`skipInitDone$$}, Body :> $CellContext`visualize[
Part[$CellContext`myAgents, $CellContext`t$$]],
Specifications :> {{$CellContext`t$$, 0, 10000, 1,
AppearanceElements -> {
ProgressSlider, PlayPauseButton, FasterSlowerButtons,
DirectionButton}}},
Options :> {
ControlType -> Animator, AppearanceElements -> None, DefaultBaseStyle ->
Animate, DefaultLabelStyle -> AnimateLabel, SynchronousUpdating ->
True, ShrinkingDelay -> 10.}, DefaultOptions :> {}],
ImageSizeCache->{445., {234., 240.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UndoTrackedVariables:>{Typeset`show$$, Typeset`bookmarkMode$$},
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], Animate,
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]]], Output,
CellChangeTimes->{
3.8238232644423656`*^9, 3.823825583834017*^9, 3.823825694399633*^9,
3.823825739909689*^9, 3.823825813177113*^9, 3.8238258926754627`*^9,
3.8238259289291983`*^9, {3.823826000590176*^9, 3.823826030988311*^9},
3.823826174682054*^9, 3.823826206480578*^9, {3.823826296706038*^9,
3.823826329451919*^9}, 3.823826362016163*^9, 3.823826400390871*^9,
3.8238264594132547`*^9, {3.823826638686146*^9, 3.823826675319862*^9},
3.823826711989064*^9, {3.823826747403532*^9, 3.823826788328635*^9}, {
3.823826893714567*^9, 3.823826930380022*^9}, 3.823826964320922*^9},
CellLabel->
Out[278]=,ExpressionUUID->571ad12f-6717-42b5-9202-65351da1b312]
}, Open]],

Cell[<b)Compare the results above to the analytical solution for the 1-D diffusion of particles starting from a single point.\>, Subsection,
CellChangeTimes->{{3.8239471483045387`*^9, 3.8239471782208357`*^9}, {
3.8239472120658627`*^9,
3.823947240159985*^9}},ExpressionUUID->3b9a6bba-c4ac-4090-991b-
d14b4826f635]
}, Open]]
}, Open]]
},
WindowSize->{960, 1035},
WindowMargins->{{Automatic, -1758}, {Automatic, 2}},
FrontEndVersion->12.0 for Mac OS X x86 (64-bit) (April 8, 2019),
StyleDefinitions->Default.nb
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 206, 4, 98, Title,ExpressionUUID->ca359983-38f4-4f7a-a685-99c62a097f1e],
Cell[789, 28, 233, 4, 46, Text,ExpressionUUID->03ac98e9-e199-4728-86d8-cd8df5a8f94c],
Cell[CellGroupData[{
Cell[1047, 36, 153, 3, 67, Section,ExpressionUUID->bf54f8f1-71f9-44e7-a0bd-b4a3bf37f7f8],
Cell[1203, 41, 766, 11, 128, Text,ExpressionUUID->2658a4a2-7330-48b1-846e-9f4cae75174a],
Cell[1972, 54, 154, 3, 30, Input,ExpressionUUID->65a76d71-c53e-4565-9a8a-0a1f74339d7e],
Cell[2129, 59, 4632, 118, 535, Input,ExpressionUUID->d484a686-8c35-4e5e-a0f2-e9b793740d4f],
Cell[CellGroupData[{
Cell[6786, 181, 1298, 24, 52, Input,ExpressionUUID->365c9f3c-567c-4aa2-ae6a-5e5cf90e89f5],
Cell[8087, 207, 2592, 49, 493, Output,ExpressionUUID->571ad12f-6717-42b5-9202-65351da1b312]
}, Open]],
Cell[10694, 259, 336, 7, 81, Subsection,ExpressionUUID->3b9a6bba-c4ac-4090-991b-d14b4826f635]
}, Open]]
}, Open]]
}
]
*)

Reviews

There are no reviews yet.

Only logged in customers who have purchased this product may leave a review.

Shopping Cart
[SOLVED] cache x86 (* Content-type: application/vnd.wolfram.mathematica *)
$25