LECTURE 4 TERM 2:
MSIN0097
Predictive Analytics
A P MOORE
MACHINE LEARNING JARGON
Model
Interpolating / Extrapolating Data Bias
Noise / Outliers
Learning algorithm
Inference algorithm
Supervised learning
Unsupervised learning
Classification
Regression
Clustering
Decomposition
Parameters
Optimisation
Training data
Testing data
Error metric
Linear model
Parametric model
Model variance
Model bias
Model generalization
Overfitting
Goodness-of-fit
Hyper-parameters
Failure modes
Confusion matrix
Data density
Partition
Hidden parameter
Feature space
High dimensional space
Low dimensional space
Separable data
Manifold / Decision surface
Hyper cube / volume / plane
D. DECOMPOSITION PROJECTION METHODS
Dimensionality reduction
D. DECOMPOSITION KERNEL METHODS
D. DECOMPOSITION MANIFOLD LEARNING
KERNEL METHODS
SupportVector Machines
DECISION BOUNDARIES
A. CLASSIFICATION CATEGORICAL VARIABLE
LARGE MARGIN
FEATURE SCALING
HARD MARGIN
MARGIN VIOLATIONS
HIGHER DIMENSIONS (FEATURES)
LINEAR SVM
POLYNOMIAL KERNEL
SIMILARITY FEATURES
RBF KERNEL
SVM REGRESSION
SVM POLYNOMIAL REGRESSION
DECISION FUNCTION
OP TIMIZ ATION
Kernel Trick
Optimization
Quadratic programming The Dual problem
LECTURE 4 TERM 2:
MSIN0097
Predictive Analytics
A P MOORE
Reviews
There are no reviews yet.