- Given that each of the following sequences converges to p, show that it converges linearly:
- The sequence is and the limit is p = 0;
- The sequence is and the limit is p = 1;
- Show that the following sequences converges to p, show that it converges quadratically.
- (a) Use the Lagrange interpolation method to find a polynomial f such that
f(1) = 2, f(2) = 1, f(3) = 4, f(4) = 3.
(b) Use the Nevilles Method instead to find the same polynomial f. 4. Programming problem: Consider the following function f : [1,1] R
f(x) = |x|
- Plot the graph of the function f.
- Given n N{0}, define for 0 k n.
Let gn(x) be the unique polynomial of degree n which results by interpolating the n + 1 data , i.e. ) for all 0 k n. Plot the functions f,g2,g3,g4 and g5 on the same graph.
- Plot the sequence {gn(0.3)}1n20.
1
Reviews
There are no reviews yet.