You should complete the notebooks in order, i.e., CNN-Layers, followed by CNN-BatchNorm, followed by CNN. This is due to potential dependencies. Note however, that CNN can be completed without CNN-Layers, since we provide the fast implementation of the CNN layers to be used in question 3.
- Implement convolutional neural network layers. Complete the CNNLayers.ipynb Jupyter notebook. Print out the entire workbook and relevant code and submit it as a pdf to gradescope. Download the CIFAR-10 dataset, as you did in earlier homework.
- Implement spatial normalization for CNNs. Complete the CNN-BatchNorm.ipynb Jupyter notebook. Print out the entire workbook and relevant code and submit it as a pdf to gradescope.
- Optimize your CNN for CIFAR-10. Complete the CNN.ipynb Jupyter notebook. Print out the entire workbook and relevant code and submit it as a pdf to gradescope.

![[Solved] EE239AS Homework5-Implement convolutional neural network layers](https://assignmentchef.com/wp-content/uploads/2022/08/downloadzip.jpg)

![[Solved] EE239AS Project 1 Regression Analysis](https://assignmentchef.com/wp-content/uploads/2022/08/downloadzip-1200x1200.jpg)
Reviews
There are no reviews yet.